بررسی در معرض قرار گرفتن جنگل‌های مانگرو سواحل جنوب ایران به مخاطرات چندگانه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم جنگل، دانشکده منابع طبیعی و علوم زمین، دانشگاه شهرکرد، شهرکرد، ایران

2 مؤسسه تحقیقات جنگل‌ها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

10.22059/jne.2023.352134.2502

چکیده

طبقه‌بندی شدت وقوع مخاطرات محیطی چندگانه در سطح رویشگاه ­های مانگرو یکی از پیش ­نیازهای اصلی جهت ارزیابی آسیب ­پذیری و  توسعه و برنامه ­ریزی راهبردهای مدیریتی برای به‌حداقل رساندن اثرات مخرب ناشی از وقوع مخاطرات چندگانه بر این رویشگاه ­ها است. هدف این تحقیق نیز نقشه­ سازی و طبقه­ بندی شدت وقوع سه نوع مخاطرة محیطی شامل خشکسالی، تندباد و پسروی مرز رو به دریا مانگروهای نایبند، تیاب و گواتر در طول سواحل خلیج فارس و دریای عمان می‌باشد. بدین‌منظور استفاده از سری زمانی بلند مدت مقادیر بارندگی ماهانه، سرعت باد روزانه و تصاویر ماهوارة لندست، نقشه ­های شدت وقوع هر یک از مخاطرات محیطی در سطح رویشگاه­ ها با استفاده از توابع موجود در نرم‌افزار ArcGIS تهیه شد. در نهایت، نقشه‌های مخاطرات پس از استانداردسازی با یکدیگر تلفیق شدند و نقشة پهنه ­بندی شدت قرارگیری در معرض مخاطرات محیطی چندگانه در سطح مانگروها تهیه شد. نتایج نشان داد که مقدار نمایة در معرض قرار گرفتن در سطح رویشگاه‌ها از 2 تا 4/6 متغیر بود و از سواحل خلیج فارس به‌سمت سواحل دریای عمان افزایش می ­یابد؛ چنان­که رویشگاه نایبند در سواحل غربی خلیج فارس (سواحل استان بوشهر) و رویشگاه گواتر در سواحل شرقی دریای عمان (سواحل استان سیستان و بلوچستان) به‌ترتیب در معرض کمترین و بیشترین شدت وقوع مخاطرات محیطی مورد بررسی قرار داشتند. نتایج این مطالعه اطلاعات حیاتی برای اجرای فرآیند ارزیابی آسیب‌پذیری و تاب­آوری رویشگا­ه­ های مانگرو مورد مطالعه را فراهم می ­سازد.

کلیدواژه‌ها

عنوان مقاله [English]

Investigating the exposure of mangrove forests of the southern coast of Iran to multiple hazards

نویسندگان [English]

  • Davood Mafi-Gholami 1
  • Abolfazl Jaafari 2

1 Department of Forest Sciences, Faculty of Natural Resources and Erath Sciences, Shahrekord University, Shahrekord, Iran

2 Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran

چکیده [English]

Classifying the severity of multiple environmental hazards at the level of mangrove habitats is one of the main prerequisites for assessing vulnerability and developing and planning management strategies to minimize the harmful effects of environmental hazards on these habitats. The aim of this study was to map and classify the intensity of occurrence of three types of environmental hazards, including drought, high-speed wind and seaward edge retreat in Nayband, Tiab and Gwadar mangrove habitats along the coasts of the Persian Gulf and Gulf of Oman. To this end, using the long-term time series of monthly rainfall values, daily wind speed and Landsat satellite images, maps of the severity of occurrence of each of the environmental hazards were prepared in each habitat using the functions available in ArcGIS software. Finally, the standardized hazard maps were combined and a map of the intensity of exposure to multiple environmental hazards was prepared throughout the mangroves. The results showed that the amount of exposure index at the level of the habitats varied from 2 to 4.6 and increases from the coasts of the Persian Gulf to the coasts of the Gulf of Oman; So, Nayband habitat on the western coast of Persian Gulf (coasts of Bushehr province) and Gwadar habitat on the eastern coast of the Gulf of Oman (coasts of Sistan and Baluchistan province) were subjected to the lowest and highest severity of environmental hazards, respectively. The results of this study have provided crucial information for assessing the vulnerability and resiliency of the studied mangrove habitats.

کلیدواژه‌ها [English]

  • Vulnerability
  • Sea level rise
  • Mangrove
  • Iran
Adger, W.N., de Campos, R.S., Mortreux, C., 2018. Mobility, displacement and migration, and their interactions with vulnerability and adaptation to environmental risks. In Routledge handbook of environmental displacement and migration. pp: 29-41. Routledge.
Alongi, D.M., 2015. The impact of climate change on mangrove forests. Current Climate Change Reports 1(1), 30-39.
Balteiro, L.D., Romero, C., 2008. Making forestry decisions with multiple criteria: A review and an assessment.
Forest Ecology and Management 255, 3222-3241.
Barlow, M. Zaitchik, B., Paz, S., Black, E., Evans, J., Hoell, A., 2016. A review of drought in the Middle East and southwest Asia. Journal of Climate 29(23), 8547-8574.
Bazrafshan, A., Ahmadi, S., Khoorani, A., 2016. Effects of Runoff and Sediment from Upland Catchment on Mangrove Forests Area (Case Study: Gabric-Hormozgan). Environmental Erosion Research Journal 6(1), 88-102.
Cinco-Castro, S., Herrera-Silveira, J., 2020, Vulnerability of mangrove ecosystems to climate change effects: The case of the Yucatan Peninsula. Ocean & Coastal Management 192, 105196.
Danehkar, A., 2001. Mangroves forests zonation in Gaz and Harra international wetlands. The Environment Science Quarterly Journal 34, 43-49.
Danehkar, A., Mahmoudi, B., Hashemi, A., 2016. Mangrove forest management and development plan of Hormozgan province, Hormozgan province general directorate of natural resources. 243 p. (In Persian)
Das, S., Crépin, A.S., 2013. Mangroves can provide protection against wind damage during storms. Estuarine, Coastal and Shelf Science 134, 98-107.
Doyle, T.W., Girod, G.F., 1997. The frequency and intensity of Atlantic hurricanes and their influence on the structure of south Florida mangrove communities. In Hurricanes. pp: 109-120. Springer, Berlin, Heidelberg.
Ellison, J.C., 2015. Vulnerability assessment of mangroves to climate change and sea-level rise impacts. Wetlands Ecology and Management 23(2), 115-137.
Ellison, J.C., Zouh, I., 2012. Vulnerability to climate change of mangroves: assessment from Cameroon, Central Africa. Biology 1(3), 617-638.
Elsaraiti, M., Merabet, A., 2021. A comparative analysis of the arima and lstm predictive models and their effectiveness for predicting wind speed. Energies 14(20), 6782.
Eslami-Andargoli, L., Dale, P.E.R., Sipe, N., Chaseling, J., 2009. Mangrove expansion and rainfall patterns in Moreton Bay, southeast Queensland, Australia. Estuarine, Coastal and Shelf Science 85(2), 292-298.
Etemadi, H., Samadi, S.Z., Sharifikia, M., Smoak, J.M., 2016. Assessment of climate change downscaling and non-stationarity on the spatial pattern of a mangrove ecosystem in an arid coastal region of southern Iran. Theoretical and Applied Climatology 126(1), 35-49.
Gilman, E. Ellison, J. Sauni, I., Tuaumu, S., 2007. Trends in surface elevations of American Samoa mangroves. Wetlands Ecology and Management 15(5), 391-404.
Halpern, B.S., Selkoe, K.A., Micheli, F., Kappel, C.V., 2007. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conservation Biology 21(5), 1301-1315.
Jiang, J., DeAngelis, D.L., Anderson, G.H., Smith, T.J., 2014. Analysis and simulation of propagule dispersal and salinity intrusion from storm surge on the movement of a marsh–mangrove ecotone in South Florida. Estuaries and Coasts 37(1), 24-35.
Karsli, V.M., Gecit, C., 2003. An investigation on wind power potential of Nurdaǧı-Gaziantep, Turkey. Renewable Energy 28(5), 823-830.
Lagomasino, D., Fatoyinbo, T., Castañeda-Moya, E., Cook, B.D., Montesano, P. M., Neigh, C.S., Morton, D.C., 2021. Storm surge and ponding explain mangrove dieback in southwest Florida following Hurricane Irma. Nature Communications 12(1), 1-8.
Long, J., Giri, C., Primavera, J., Trivedi, M., 2016. Damage and recovery assessment of the Philippines' mangroves following Super Typhoon Haiyan. Marine Pollution Bulletin 109(2), 734-743.
Lovelock, C.E., Cahoon, D.R., Friess, D.A., Guntenspergen, G.R., Krauss, K.W., Reef, R., Triet, T., 2015. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526(7574), 559-563.
Mafi-Gholami, D., Pirasteh, S., Ellison, J.C., Jaafari, A., 2021. Fuzzy-based vulnerability assessment of coupled social-ecological systems to multiple environmental hazards and climate change. Journal of Environmental Management 299, 113573.
Mafi-Gholami, D., Zenner, E.K., Jaafari, A., Bui, D.T., 2020. Spatially explicit predictions of changes in the extent of mangroves of Iran at the end of the 21st century. Estuarine, Coastal and Shelf Science 237, 106644.
Mafi-Gholami, D., Zenner, E.K., Jaafari, A., Ward, R.D., 2019. Modeling multi-decadal mangrove leaf area index in response to drought along the semi-arid southern coasts of Iran. Science of the Total Environment 656, 1326-1336.
Mafi-Gholami, D., Baharlouii, M., 2019. Monitoring long-term mangrove shoreline changes along the northern coasts of the Persian Gulf and the Oman Sea. Emerging Science Journal 3(2), 88-100.
Mahendra, R.S., Mohanty, P.C., Bisoyi, H., Kumar, T.S., Nayak, S., 2011. Assessment and management of coastal multi-hazard vulnerability along the Cuddalore-Villupuram, east coast of India using geospatial techniques. Ocean & Coastal Management 54(4), 302-311.
Pirasteh, S., Zenner, E.K., Mafi-Gholami, D., Jaafari, A., Kamari, A.N., Liu, G., Li, J., 2021. Modeling mangrove responses to multi-decadal climate change and anthropogenic impacts using a long-term time series of satellite imagery. International Journal of Applied Earth Observation and Geoinformation 102, 102390.
Safiari, S. H., 2016. Mangrove forests in Iran. Nature of Iran 2(2), 42-57. (In Persian)
Sarwar, M., Mahabub, G., Woodroffe, C.D., 2013. Rates of shoreline change along the coast of Bangladesh. Journal of Coastal Conservation 17(3), 515-526.
Shearman, P., Bryan, J., Walsh, J.P., 2013. Trends in deltaic change over three decades in the Asia-Pacific region. Journal of Coastal Research 29(5), 1169-1183.
Smith, T.J., Anderson, G.H., Balentine, K., Tiling, G., Ward, G.A., Whelan, K.R., 2009. Cumulative impacts of hurricanes on Florida mangrove ecosystems: sediment deposition, storm surges and vegetation. Wetlands 29(1), 24-34.
Solomon, S., Qin, D., Manning, M., Averyt, K., Marquis, M. (Eds.), 2007. Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC (Vol. 4). Cambridge University Press.
Suwarno, I.Y., Irwanto, M., Hiendro, A., 2021. Analysis of wind speed characteristics using different distribution models in Medan City, Indonesia. International Journal of Power Electronics and Drive Systems 2088(8694), 1103.
Tamassoki, E., Soleymani, Z., Bahrami, F., Abbasgharemani, H., 2014. A survey of drought and variation of vegetation by statistical indexes and remote sensing (Case study: Jahad forest in Bandar Abbas). In IOP conference series: Earth and Environmental Science 20(1), 012033. IOP Publishing.
Telewski, F.W., 2006. A unified hypothesis of mechanoperception in plants. American Journal of Botany 93(10), 1466-1476.
Tran Thi, V., Tien Thi Xuan, A., Phan Nguyen, H., Dahdouh-Guebas, F., Koedam, N., 2014. Application of remote sensing and GIS for detection of long-term mangrove shoreline changes in Mui Ca Mau, Vietnam. Biogeosciences 11(14), 3781-3795.
Vizcaya-Martínez, D.A., Flores-de-Santiago, F., Valderrama-Landeros, L., Serrano, D., Rodríguez-Sobreyra, R., Álvarez-Sánchez, L.F., Flores-Verdugo, F., 2022. Monitoring detailed mangrove hurricane damage and early recovery using multisource remote sensing data. Journal of Environmental Management 320, 115830.
Vo, Q.T., Oppelt, N., Leinenkugel, P., Kuenzer, C., 2013. Remote sensing in mapping mangrove ecosystems-An object-based approach. Remote Sensing 5(1), 183-201.
Wang, W., Okaze, T., 2022. Statistical analysis of low-occurrence strong wind speeds at the pedestrian level around a simplified building based on the Weibull distribution. Building and Environment 209, 108644.
Weisser, D., 2003. A wind energy analysis of Grenada: an estimation using the ‘Weibull’ density function. Renewable Energy 28(11), 1803-1812.
Williams, R.J., Meehan, A.J., 2004. Focusing management needs at the sub-catchment level via assessments of change in the cover of estuarine vegetation, Port Hacking, NSW, Australia. Wetlands Ecology and Management 12(5), 499-518.
Wolf, J., Woolf, D., Bricheno, L., 2020. Impacts of climate change on storms and waves relevant to the coastal and marine environment around the UK. MCCIP Science Review 132-157.
Wu, H., Soh, L.K., Samal, A., Chen, X.H., 2008. Trend analysis of streamflow drought events in Nebraska. Water Resources Management 22(2), 145-164.
Wu, C., Liu, G., Huang, C., Liu, Q., Guan, X., 2018. Ecological vulnerability assessment based on fuzzy analytical method and analytic hierarchy process in Yellow River Delta. International Journal of Environmental Research and Public Health 15(5), 855