بررسی سمیت حاد و آسیب‌های هیستوپاتولوژی علف‌کش پاراکوآت در pH، سختی و دماهای مختلف در ماهی گامبوزیا Gambusia holbrooki Girard, 1859

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه محیط زیست، دانشکده منابع طبیعی و محیط زیست، دانشگاه بیرجند، ایران.

چکیده

کمتر از 0/1درصد از میزان آفت­ کش ­های مصرفی به آفات می ­رسند و بقیه وارد محیط ­زیست شده و منابع آبی را آلوده کرده و تأثیرات نامطلوبی بر ماهیان می­ گذارند. این پژوهش با هدف بررسی سمیت­ حاد و آسیب­ شناسی بافتی پاراکوآت در pH، سختی و دماهای مختلف بر روی ماهی گامبوزیا (Gambusia holbrooki) انجام شده است. سمیت ­حاد پارآکوات به‌مدت 96 ساعت بر روی ماهی مورد مطالعه انجام شد و پارامترهای فیزیکوشیمیایی آب از قبیل 10 و 7، 5 =pH، سختی= 0، 200 و 400 میلی گرم بر لیتر و دما= 18، 25 و 30 درجة سانتی گراد تنظیم شد و آسیب ­شناسی بافتی پارآکوات بر روی بافت آبشش و رودة ماهی گامبوزیا بعد از 21 روز بررسی شد. مقادیر سمیت کشندة میانة (LC50) علف­کش پارآکوات برای 96 ساعت بر روی ماهی G. holbrooki در 10 و 7، 5 = pH به ­ترتیب برابر 13/80، 17/78و 15/48 میلی­ گرم بر لیتر، در سختی= 0، 200 و 400 میلی­گرم بر لیتر به ­ترتیب برابر 7/94، 19/49 و 36/30 میلی­ گرم بر لیتر و در دما= 18، 25 و 30 درجة سانتی ­گراد به ­ترتیب برابر 64/55، 51/28 و 25/70 میلی ­گرم بر لیتر می­ باشد. آسیب ­شناسی بافتی پارآکوات در 5 =pH شامل هایپرپلازی، انحنا، همجوشی و کوتاه شدن لاملاهای ثانویه می­ باشد و از آسیب­ شناسی بافتی پاراکوآت در رودة ماهی گامبوزیا در 5 =pH شامل تورم سلول­ های گابلت، افزایش تعداد سلول­ های گابلت و نکروز و فرسایش می­ باشد. غلظت­ های تحت­ حاد علف­ کش پاراکوآت می­ تواند اثرات نامطلوبی بر بافت آبشش و رودة ماهی گامبوزیا داشته باشد که شدت آن بستگی به ویژگی­های فیزیکوشیمیایی محیط آبی دارد.

کلیدواژه‌ها

عنوان مقاله [English]

Acute toxicity and histopathological changes in gill and intestine of Gambusia holbrooki Girard, 1859 fish exposed to paraquat at different pH, hardness and temperatures

نویسندگان [English]

  • Mohammad Hossein Sayadi
  • Javad Kharkan
  • Hossein Shekari
  • Ayoob Rezaei

Department of of Environmental Engineering, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran.

چکیده [English]

Inevitably, less than 0.1% of pesticides used for pest control reach their target pests and the rest enter the environment and pollute water resources causing adverse effects on fish. This study aimed to investigate the acute toxicity and histopathological damage of paraquat at different pH, hardness and temperatures on Gambusia holbrooki. Acute toxicity of paraquat was performed for 96 h and the physicochemical parameters were adjusted viz. pH  5, 7 and 10, hardness  0, 200 and 400 mg/L and temperature 18, 25 and 30 °C. Then, the histopathological effects of paraquat on gill tissue and intestine of Gambosia holbrooki were then evaluated after 21 days. Acute toxicity of Paraquat herbicide on Gambusia fish at pH = 5, 7 and 10, equal to 13.80, 17.78 and 15.48 mg/L, hardness= 0, 200 and 400 mg/L, equal to 7.94, 19.49 and 36.30 mg/L and temperatures= 18, 25 and 30°C were 64.56, 51.28 and 25.70 mg/L, respectively. Histopathological lesions of paraquat toxin in the gills of Gambusia holbrooki at pH=5 mg/L included hyperplasia, curvature, a fusion of lamellae and lamellar synechiae. Histopathological lesions of paraquat toxin in the intestine of Gambusia holbrooki demonstrated swelling and a higher number of goblet cells, necrosis and erosion. According to the present study results, it can be safely concluded that acute toxicity concentrations of paraquat herbicide can have adverse effects on gills and intestines of Gambusia holbrooki, the severity of which depends on the physicochemical properties of the aquatic environment.

کلیدواژه‌ها [English]

  • Higher number of goblet cells
  • Physicochemical parameters
  • Acute toxicity
  • Lamellar synechiae
Abdoli, A., 2000. The Inland Water Fishes of Iran. Iranian Museum of Nature and Wildlife, Tehran, Iran. 276 p. (In Persian)
Abdulkareem, S.I., Owolabi, O.D., 2019. Acute toxicity of zinc oxide nanoparticles on blood cell morphology, haematology and histopathology of Heterobranchus longifilis. Animal Research International 16(1), 3174-3185.‏
Abel, P., Axiak, V., 1990. Ecotoxicology and the Marine Environment. Old University Building Press. Malta Austria. pp. 250- 269.
Ada, F.B., Ekpenyong, E., Ayotunde, E.O., 2012. Haematological, biological and behavioural changes in Oreochromis niloticus (Linne 1757) juveniles exposed to Paraquat herbicide. Journal of Environmental Chemistry and Ecotoxicolog 4(3), 64-74.‏
Akhtar, N., Khan, M.F., Tabassum, S., 2019. Sub lethal effects of atrazine on hematology, histopathology and biochemistry of chirruh snowtrout (Schizothorax esocinus). JAPS, Journal of Animal and Plant Sciences 29(5), 1447-1454.
Al-Bairuty, G.A., Boyle, D., Henry, T.B., Handy, R.D., 2016. Sublethal effects of copper sulphate compared to copper nanoparticles in rainbow trout (Oncorhynchus mykiss) at low pH: physiology and metal accumulation. Aquatic Toxicology 174, 188-198.‏
Al-Kawaz, J.M., 2019. Pathological Study of Experimental Glyphosate Toxicity in Mosquito Fish Gambusia affinis. In Journal of Physics: Conference Series 1294(6), 062023.
Amirthalingam, T., Velusamy, G., Pandian, R., 2013. Cadmium-induced changes in mitotic index and genotoxicity on Vigna unguiculata (Linn.) Walp. Journal of Environmental Chemistry and Ecotoxicology 5(3), 57-62.‏
Arellano, J.M., Storch, V., Sarasquete, C., 1999. Histological changes and copper accumulation in liver and gills of the Senegales sole, Solea senegalensis. Ecotoxicology and Environmental Safety 44(1), 62-72.‏
Banaee, M., 2012. Adverse effect of insecticides on various aspects of fish’s biology and physiology. Insecticides Basic and other Applications 6, 101-126.‏
Banaee, M., Davoodi, M.H., Zoheiri, F., 2013. Histopathological changes induced by paraquat on some tissues of gourami fish (Trichogaster trichopterus). Open Veterinary Journal 3(1), 36-42.
Banaee, M., Mirvagefei, R., Rafei, G., Majazi Amiri, B., 2008. Effect of sub-lethal Diazinon concentrations on blood plasma biochemistry. International Journal of Environmental Research 2, 189-198.
Banaee, M., Mirvaghefi, A.R., Sureda, A., Rafiee, G.R., Ahmadi. K., 2012. Blood Biochemical and Liver Histopathological Changes in Rainbow Trout (Oncorhynchus mykiss) Following Exposure to Sub-Lethal Concentrations of Diazinon. Journal of Natural Environment 65(3), 297- 313. (In Persian)
Banaee, M., Sureda, A., Mirvaghefi, A.R., Ahmadi, K., 2011. Effects of diazinon on biochemical parameters of blood in rainbow trout (Oncorhynchus mykiss). Pesticide Biochemistry and Physiology 99(1), 1-6.‏
Beegam, A., Lopes, M., Fernandes, T., Jose, J., Barreto, A., Oliveira, M., Pereira, M.L., 2020. Multiorgan histopathological changes in the juvenile seabream Sparus aurata as a biomarker for zinc oxide particles toxicity. Environmental Science and Pollution Research 27, 30907-30917.
Boelsterli, U.A., 2002. Cellular transport and selective accumulation of potentially toxic xenobiotics. In Mechanistic Toxicology, pp. 54-73.
Cabral, J.A., Marques, J.C., 1999. Life history, population dynamics and production of eastern mosquitofish, Gambusia holbrooki (Pisces, Poeciliidae), in rice fields of the lower Mondego River Valley, western Portugal. Acta Oecologica 20(6), 607-620.‏
Capaldo, A., Gay, F., Laforgia, V., 2019. Changes in the gills of the European eel (Anguilla anguilla) after chronic exposure to environmental cocaine concentration. Ecotoxicology and Environmental Safety 169, 112-119.
Das, P.C., Ayyappan, S., Das, B.K., Jena, J.K., 2004. Nitrite toxicity in Indian major carps: sublethal effect on selected enzymes in fingerlings of Catla catla, Labeo rohita and Cirrhinus mrigala. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 138(1), 3-10.‏
El-Boghdady, N.A., Abdeltawab, N.F., Nooh, M.M., 2017. Resveratrol and montelukast alleviate paraquat-induced hepatic injury in mice: modulation of oxidative stress, inflammation, and apoptosis. Oxidative Medicine and Cellular Longevity, pp. 1-10.
Fanta, E., Rios, F.S.A., Romão, S., Vianna, A.C.C., Freiberger, S., 2003. Histopathology of the fish Corydoras paleatus contaminated with sublethal levels of organophosphorus in water and food. Ecotoxicology and Environmental Safety 54(2), 119-130.‏
Farkas, J., Christian, P., Gallego-Urrea, J.A., Roos, N., Hassellöv, M., Tollefsen, K.E., Thomas, K.V., 2011. Uptake and effects of manufactured silver nanoparticles in rainbow trout (Oncorhynchus mykiss) gill cells. Aquatic Toxicology 101(1), 117-125.‏
Flores-Lopes, F., Thomaz, A.T., 2011. Histopathologic alterations observed in fish gills as a tool in environmental monitoring. Brazilian Journal of Biology 71(1), 179-188.‏
Forouzangohar, M., Haghnia, G.H., Koocheki, A., 2005. Organic amendments to enhance atrazine and metamitron degradation in two contaminated soils with contrasting textures. Soil & Sediment Contamination 14(4), 345-355.‏
Graney Jr, R.L., Cherry, D.S., Cairns, J., 1984. The influence of substrate, pH, diet and temperature upon cadmium accumulation in the Asiatic clam (Corbicula fluminea) in laboratory artificial streams. Water Research 18(7), 833-842.‏
Guneş, E., Yerli, S.V., 2011. Effects of deltamethrin on lipase activity in Guppies (Poecilia reticulata). Turkish Journal of Fisheries and Aquatic Sciences 11(3), 473-476.‏
Guo, F., Sun, Y.B., Su, L., Li, S., Liu, Z.F., Li, J.,   Li, J., 2015. Losartan attenuates paraquat-induced pulmonary fibrosis in rats. Human & Experimental Toxicology 34(5), 497-505.
Hassan, M., Shah Norhan, N.A., Mohd Daud, H., Chong, J.L., Abd Halim Shah, M.M., Karim, N.U., 2015. Behavioral and histopathological changes of common Carp (Cyprinus carpio) exposed to paraquat. Journal of Fisheries and Livestock Production 3(131), 2.‏
Hodgson, H., 2004. A Textbook of Modern Toxicology. Wiley Interscience Publication, New Jersey, 557.
Jaramillo-Villa, U., Caramaschi, É.P., 2008. Índices de integridade biótica usando peixes de água doce: uso nas regiões tropical e subtropical. Oecologia Brasiliensis 12(3), 442-462.
Keivany, Y., Nasri, M., Abbasi, K., Abdoli, A., 2016. Atlas of Inland Water Fishes of Iran. Iran Department of Environment Press, Tehran, Iran. 234 p. (In Persian)
Konthonbut, P., Kongtip, P., Nankongnab, N., Tipayamongkholgul, M., Yoosook, W., Woskie, S., 2018. Paraquat exposure of pregnant women and neonates in agricultural areas in Thailand. International Journal of Environmental Research and Public Health 15(6), 1163.‏
Koohkan, A., Abdi, R., Saliqezadeh, R., Jadi, Y., 2014. Tissue pathology due to subacute paraquat poisoning in liver tissue (Barbus sharpeyi). Comparative Pathology 11(1), 1167- 1172.
Kumar, N., Ambasankar, K., Krishnani, K.K., Gupta, S.K., Bhushan, S., Minhas, P.S., 2016. Acute toxicity, biochemical and histopathological responses of endosulfan in Chanos chanos. Ecotoxicology and Environmental Safety 131, 79-88.‏
Ladipo, M.K., Doherty, V.F., Oyebadejo, S.A., 2011. Acute toxicity, behavioural changes and histopathological effect of paraquat dichloride on tissues of catfish (Clarias gariepinus). International Journal of Biology 3(2), 67.‏
Laporte, J.M., Truchot, J.P., Ribeyre, F., Boudou, A., 1997. Combined effects of water pH and salinity on the bioaccumulation of inorganic mercury and methylmercury in the shore crab Carcinus maenas. Marine Pollution Bulletin 34(11), 880-893.‏
Liu, H., Wu, Q., Chu, T., Mo, Y., Cai, S., Chen, M.,   Zhu, G., 2018. High-dose acute exposure of paraquat induces injuries of swim bladder, gastrointestinal tract and liver via neutrophil-mediated ROS in zebrafish and their relevance for human health risk assessment. Chemosphere 205, 662-673.‏
Liu, J., Pang, J.J., Tu, Z.C., Wang, H., Sha, X.M., Shao, Y.H., Liu, G.X., 2019. The accumulation, histopathology, and intestinal microorganism effects of waterborne cadmium on Carassius auratus gibelio. Fish Physiology and Biochemistry 45(1), 231-243.‏
Lotfi, Z., Borhani, S., Jamili, S., Kadkhodai, A., 2012. Toxic effect of copper sulfate on gill and liver tissue of Oncorhynchus mykiss. Journal of Animal Environment 5(4), 79-84. (In Persian)
Ma, J., Li, Y., Niu, D., Li, Y., Li, X., 2014. Immunological effects of paraquat on common carp, Cyprinus carpio L. Fish and Shellfish Immunology 37(1), 166-172.‏
Mansouri, B., Maleki, A., Davari, B., Johari, S.A., Shahmoradi, B., Mohammadi, E., Shahsavari, S., 2016. Histopathological effects following short-term coexposure of Cyprinus carpio to nanoparticles of TiO 2 and CuO. Environmental Monitoring and Assessment 188(10), 575.
Mansouri, B., Maleki, A., Johari, S.A., Shahmoradi, B., Mohammadi, E., Davari, B., 2017. Histopathological effects of copper oxide nanoparticles on the gill and intestine of common carp (Cyprinus carpio) in the presence of titanium dioxide nanoparticles. Chemistry and Ecology 33(4), 295-308.‏
Martinez, C.B.R., Nagae, M.Y., Zaia, C.T.B.V., Zaia, D.A.M., 2004. Acute morphological and physiological effects of lead in the Neotropical fish Prochilodus lineatus. Brazilian Journal of Biology 64(4), 797-807.‏
Martins, R.J., Pardo, R., Boaventura, R.A., 2004. Cadmium (II) and zinc (II) adsorption by the aquatic moss Fontinalis antipyretica: effect of temperature, pH and water hardness. Water Research 38(3), 693-699.‏
Mokhayer, B., 2010. Diseases of Cultured Fishes. University of Tehran. 638 p. (In Persian).
Mubiana, V.K., Blust, R., 2007. Effects of temperature on scope for growth and accumulation of Cd, Co, Cu and Pb by the marine bivalve Mytilus edulis. Marine Environmental Research 63(3), 219-235.‏
Noureen, A., Jabeen, F., Tabish, T.A., Ali, M., Iqbal, R., Yaqub, S., Shakoor Chaudhry, A., 2021. Histopathological changes and antioxidant responses in common carp (Cyprinus carpio) exposed to copper nanoparticles. Drug and Chemical Toxicology, 44(4), 372-379.‏
OECD., 2019. OECD Guidelines for the Testing of Chemicals, Section 2: Effects on Biotic Systems, Test guideline No. 203: Fish, Acute Toxicity Testing. OECD Publishing.
Ogunwole, G.A., Uju, S., Saliu, J.K., 2018. Paraquat Toxicity on Selected Biomarkers in Clarias gariepinus. IOSR Journal of Environmental Science, Toxicology and Food Technology 12(5), 66-75.‏
Patel, J.M., Bahadur, A., 2010. Histopathological alternations in Catla catla induced by chronic exposure of copper ions. Journal of Cell and Tissue Research 10(3), 2365-2370.
Pirsaheb, M., Azadi, N.A., Miglietta, M.L., Sayadi, M.H., Blahova, J., Fathi, M., Mansouri, B., 2019. Toxicological effects of transition metal-doped titanium dioxide nanoparticles on goldfish (Carassius auratus) and common carp (Cyprinus carpio). Chemosphere, 215, 904-915.
Prabhu, S., Poulose, E.K., 2012. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Letters 2(1), 32.‏
Pyke, G.H., 2005. A review of the biology of Gambusia affinis and G. holbrooki. Reviews in Fish Biology and Fisheries 15(4), 339-365.‏
Rahbar, M., Sattari, M., Alaf Noirian, H., Ahmadinejad, M., Khara, H., Safari, R., 2019. The effect of Malathion on the activity of some digestive enzymes and intestinal tissue pathology in juvenile Iranian sturgeon Acipenser persicus. Aquatic Physiology and Biotechnology 7 (2), 107-129. )In Persian)
Rahmani, R., Hamesadeghi, Y., Mansouri, A., 2019. Toxicity effects of mercury and silver nanoparticles on common carp (Cyprinus carpio). Comparative Clinical Pathology 28(3), 811-816.‏
Ren, M., Wang, Y.M., Zhao, J., Zhao, J., Zhao, Z.M., Zhang, T.F., Peng, S.Q., 2014. Metallothioneins attenuate paraquat-induced acute lung injury in mice through the mechanisms of anti-oxidation and anti-apoptosis. Food and Chemical Toxicology 73, 140-147.‏
Ribeiro, C.O., Neto, F.F., Mela, M., Silva, P.H., Randi, M.A.F., Rabitto, I.S., Pelletier, E., 2006. Hematological findings in Neotropical fish Hoplias malabaricus exposed to subchronic and dietary doses of methylmercury, inorganic lead, and tributyltin chloride. Environmental Research 101(1), 74-80.‏
Saaristo, M., Lagesson, A., Bertram, M.G., Fick, J., Klaminder, J., Johnstone, C.P., Brodin, T., 2019. Behavioural effects of psychoactive pharmaceutical exposure on European perch (Perca fluviatilis) in a multi-stressor environment. Science of the Total Environment 655, 1311-1320.‏
Saber, T., 2011. Histological adaptation to thermal changes in gills of common carp fishes Cyprinus carpio L. Rafidain Journal of Science 22(1), 46-55.‏
Salazar-Lugo, R., Mata, C., Oliveros, A., Rojas, L.M., Lemus, M., Rojas-Villarroel, E., 2011. Histopathological changes in gill, liver and kidney of Neotropical fish Colossoma macropomum exposed to paraquat at different temperatures. Environmental Toxicology and Pharmacology 31(3), 490-495.
Sandstrom, J., Broyer, A., Zoia, D., Schilt, C., Greggio, C., Fournier, M., Monnet-Tschudi, F., 2017. Potential mechanisms of development-dependent adverse effects of the herbicide paraquat in 3D rat brain cell cultures. Neurotoxicology 60, 116-124.‏
Sayadi, M.H., Mansouri, B., Shahri, E., Tyler, C.R., Shekari, H., Kharkan, J., 2020. Exposure effects of iron oxide nanoparticles and iron salts in blackfish (Capoeta fusca): Acute toxicity, bioaccumulation, depuration, and tissue histopathology. Chemosphere 125900.
Sayadi, M.H., Pavlaki, M.D., Loureiro, S., Martins, R., Tyler, C.R., Mansouri, B., Shekari, H., 2022. Co-exposure of zinc oxide nanoparticles and multi-layer graphenes in blackfish (Capoeta fusca): evaluation of lethal, behavioural, and histopathological effects. Ecotoxicology 31(3), 425-439.‏
Sayadi, M.H., Pavlaki, M.D., Martins, R., Mansouri, B., Tyler, C.R., Kharkan, J., Shekari, H., 2021. Bioaccumulation and toxicokinetics of zinc oxide nanoparticles (ZnO NPs) co-exposed with graphene nanosheets (GNs) in the blackfish (Capoeta fusca). Chemosphere 269, 128689.‏
Sayed, A.E.D.H., Mekkawy, I.A., Mahmoud, U.M., Nagiub, M., 2020. Histopathological and histochemical effects of silver nanoparticles on the gills and muscles of African catfish (Clarias garepinus). Scientific African 7, e00230.‏
Schlenk, D., Barson, W.H., 2001. Target organ toxicity in marine and freshwater teleosts; University of California. Riverside, California. Taylor and Francis Press 1(1), 1-40.
Shahzad, K., Khan, M.N., Jabeen, F., Kosour, N., Chaudhry, A.S., Sohail, M., Ahmad, N., 2019. Toxicity of zinc oxide nanoparticles (ZnO-NPs) in tilapia (Oreochromis mossambicus): tissue accumulation, oxidative stress, histopathology and genotoxicity. International Journal of Environmental Science and Technology 16(4), 1973-1984.‏
Shamloufar, M., Jorjani, S., Qelichi, A., 2014. Determination of LC50 and evaluation of tissue lesions caused by Swine toxin in whitefish Rutilus frisii kutum, Journal of Aquaculture Development 9, 43-52. (In Persian)
Sharifpour, A., Soltani, M., Javadi, M., 2003. Determination of LC50 and tissue lesions due to endosulfan toxin in Huso huso, Iranian Journal of Fisheries 12 (4), 69-84.  (In Persian).
Singh, D., Nath, K., Trivedi, S.P., Sharma, Y.K., 2008. Impact of copper on haematological profile of freshwater fish, Channa punctatus. Journal of Environmental Biology 29(2), 253.‏
Talib, A.H., AL-Rudainy, A.J., Gathwan, M.A., Thakir, B.M., 2018. The acute toxicity of herbicide roundup ultra in mosquito fish Gambusia affinis. Journal of Biodiversity and Environmental Sciences 13, 9-15.‏
Tao, S., Long, A., Dawson, R.W., Xu, F., Li, B., Cao, J., Fang, J., 2002. Copper speciation and accumulation in the gill microenvironment of carp (Cyprinus carpio) in the presence of kaolin particles. Archives of Environmental Contamination and Toxicology 42(3), 325-331.‏
Tejada, S., Sureda, A., Roca, C., Gamundi, A., Esteban, S., 2007. Antioxidant response and oxidative damage in brain cortex after high dose of pilocarpine. Brain Research Bulletin 71(4), 372-375.‏
United Nations, 2009. Globally Harmonized System of Classificationand Labelling of Chemicals (GHS). United Nations Publications.
Van, H.D., Vosloo, A., Nikinmaa, M., 2004. Effects of short-term copper exposure on gill structure, methallothionein and hypoxia-inducible factor- 1á (HIF-1á) levels in rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology 69, 271-280.
Velmurugan, B., Cengiz, E.I., Yolcu, M., Uğurlu, P., Selvanayagam, M., 2018. Cytological and histological effects of pesticide chlorpyriphos in the gills of Anabas testudineus. Drug and Chemical Toxicology 1-6.‏
Vutukuru, S.S., Suma, C.H., Madhavi, K.R., Juveria, J., Pauleena, J.S., Rao, J.V., Anjaneyulu, Y., 2005. Studies on the development of potential biomarkers for rapid assessment of copper toxicity to freshwater fish using Esomus danricus as model. International Journal of Environmental Research and Public Health 2(1), 63-73.‏
Weiner, E.R., 2010. Applications of environmental chemistry: a practical guide for environmental professionals. CRC press, 288.
Yamamoto, F.Y., Garcia, J.R.E., Kupsco, A., Ribeiro, C.O., 2017. Vitellogenin levels and others biomarkers show evidences of endocrine disruption in fish species from Iguaçu River-Southern Brazil. Chemosphere 186, 88-99.‏
Yarahmadi, Z., Movahedinia, A.A., Rastegar, S., 2013. Gill histology and endocrine disruption in Liza klunzingeri exposed of Naphthalene stress. Journal of Animal Environment 5(1), 171- 177.  (In Persian)
Yuen, B.B., Wong, C.K., Woo, N. Y.S., Au, D.W., 2007. Induction and recovery of morphofunctional changes in the intestine of juvenile carnivorous fish (Epinephelus coioides) upon exposure to foodborne benzo [a] pyrene. Aquatic Toxicology 82(3), 181-194.