ارزیابی اثر تغییراقلیم بر متغیرهای اقلیمی با استفاده از مدل LARS-WG6 (مطالعة شهر بندرعباس)

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه اقلیم شناسی، دانشکده جغرافیا، دانشگاه یزد، یزد، ایران

چکیده

یکی از چالش‌های قرن 21، تغییراقلیم است. تغییراقلیم می‌تواند بر متغیرهای اقلیمی تاثیر بگذارد که این بر آب ‌و ‌‌هوای سیاره تاثیر زیادی خواهد داشت. دما و بارش از عناصر اصلی شکل­گیری اقلیم می‌باشند، که تغییرات آن، ساختار آب و ‌هوایی هر محل را دگرگون می‌سازد. بنابراین در این تحقیق، تأثیر تغییراقلیم بر دما و بارش بندر­عباس با استفاده از مدل‌های گردش عمومی و مدل ریزمقیاس‌نمائی LARS-WG6 تحت سناریوهای RCP8.5 و RCP4.5 در دورة 2040-2020 بررسی شده و متغیرهای اقلیمی عنوان شده مقایسه و همبستگی مقادیر با استفاده از آزمون T استیودنت مورد آزمون قرار گرفت. نتایج نشان داد که دمای حداکثر و حداقل ماهانه به‌جز موارد محدود در هر چهار‌مدل و دو‌سناریو افزایش خواهند ‌داشت. بالاترین میزان افزایش دمای‌ حداقل و حداکثر به ترتیب در ماه ژوئن، مدل HadGEM2-ES، سناریوی RCP4.5 (3/65 درجه سانتی­گراد) و ژانویه مدل HadGEM2-ES، سناریوی RCP4.5 (2/48 درجه سانتی‌گراد) اتفاق‌ افتاده ‌است. این افزایش در میانگین سالانه و فصلی تکرار شده و به‌طور متوسط دمای‌حداقل و حداکثر سالانه به‌ترتیب 1 و 0/86 درجه سانتی‌گراد افزایش خواهند داشت. همچنین مدل­ ها به‌طورکلی افزایش بارش را در اکثر موارد پیش­ بینی کردند. بیشترین افزایش را مدل GFDL-CM3 سناریوی RCP4.5 (25/82درصد) در ماه مارس پیش­بینی کرده ­‌است. پیش ­بینی‌ها افزایش بارش سالانه و فصلی را نیز نشان دادند که میزان افزایش بارش در سناریوی RCP4.5 بیشتر از سناریوی RCP8.5  بوده ‌است. به‌طور کلی نتایج نشان داد که در سطح اطمینان 95 درصد تفاوت معنی‌داری بین داده‌های واقعی و داده‌های حاصل از مدل در مواردی وجود دارد. درنتیجه بندرعباس در آینده، افزایش بارش و دما را تجربه خواهد‌کرد که این می‌تواند خطر وقوع حوادثی طبیعی مانند سیل و تنش‌های گرمایی را در منطقه افزایش دهد. مدیریت این شرایط، ضروری بوده و نتایج مطالعه حاضر می‌تواند جهت اتخاذ راهکارهایی برای مشکلات مفید واقع شود.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of the Effects of Climate Change on Climatic Vriables Using the LARS-WG6 Model (Case Study: Bandar Abbas)

نویسندگان [English]

  • Shahranoo Monjazeb Marvdashti
  • Kamal Omidvar

Department of Climatology, Faculty of Geography, Yazd University, Yazd, Iran

چکیده [English]

One of the challenges issues of the 21st century is climate change. One of its effects could be a change in climatic parameters that will have a great impact on the planet's climate. Temperature and precipitation are the two most important elements for describing climate that their changes also alter the climatic structure of any region. It is very important to study the temperature and precipitation trends in different time and regions. Therefore, in this study, the effect of climate change on temperature and precipitation in Bandar Abbas was investigated using four General Circulation Models (GCM) in the period 2020-2020. Moreover, LARS-WG6 statistical model was used for exponential microscale and two emission scenarios RCP8.5 and RCP4.5. The results of evaluation models by Correlation Coefficient (R2), Root Mean Square Error (RMSE), Mean Absolute Error (MAE) showed that LARS-WG6 software is a appropriate tool for reproducing precipitation and temperature for the future. The highest correlation coefficient is belonged to the minimum temperature in GFDL-CM3 models (0.92), MIROC5 (0.98) and the maximum temperature of GFDL-CM3 model (0.95). The highest and lowest correlation belonged to the minimum temperature and precipitation, respectively. The forecasting results of temperature and precipitation except for a few cases show that the maximum and minimum of monthly temperatures will increase in all four models and two scenarios. Highest increase in minimum and maximum temperature is determined in June, HadGEM2-ES model, RCP4.5 scenario (3.65 ° C) and January, HadGEM2-ES model, RCP4.5 scenario (2.48 ° C), respectively. This increase is repeated in the annual and seasonal average.  The average of minimum and maximum annual temperatures will increase by 1 and 0.86 ° C, respectively. The results of the models generally predicted an increase in precipitation in most cases. The GFDL-CM3 forecast the biggest increase in the RCP4.5 scenario (25.82%) in March. Forecast data also showed an increase in annual and seasonal rainfall. The RCP4.5 scenario recorded more increase in precipitation than RCP8.5 scenario. According to these results, Bandar Abbas will face an increase in rainfall and temperature in the future. This increase in temperature and rainfall can have devastating consequences in various sectors such as agriculture, tourism, water source, environment and health. As a result of events such as heat stress and devastating floods, damage to plants and animals, the spread of diseases caused by these changes, as well as reduced visits to tourist areas such as Hengam Island are some of the consequences that Bandar Abbas will face in the next twenty years. Therefore, the results of this study can be useful in recognition and solving problems related to climate change. According to the results of this study, managers in different sectors can assume the necessary strategies to adapt and reduce the consequence effects of climate change.

کلیدواژه‌ها [English]

  • Climate change
  • Atmospheric General Circulation Models (AGCM)
  • Exponential microscale
  • Bandar Abbas
  • LARS-WG6
Abbaspour, C.K., Faramarzi, M., Seyed Ghasemi, S., Yong, H., 2009. Assessing the impact of climate change on water resources in Iran. Water Research 45, 1-16.
Akhavan, S.M., Ghabaei, S., Mosaedi, A., 2016. Investigation of the effect of climate change on net irrigation requirement of main crops of Hamadan-Bahar Plain using LARS-WG downscaling model. Water and Soil Conservation 22(4), 25-46. (In Persian).
Anonymous. 1988. IPCC-DDC. http://ipcc-ddc.cru.uea.ac.uk/.
Anonymous. 2021. Hormozgan Meteorologica Administration.http://www.hormozganmet.ir/fa/.html?id=183.
Ashraf, B., Mousavi Baygi, M., Kamali, G.A., Davari, K., 2011. Prediction of Seasonal Variations of Climatological Parameters over Next 20 Years by Using Statistical Downscaling Method of HADCM3 Data (Case Study: Khorasan Razavi Province). Water and Soil 25(4), 940-952. (In Persian).
Babaeian, I., Kouhi, M., 2012. Agroclimatic Indices Assessment over Some Selected Weather Stations of Khorasan Razavi Province under Climate Change Scenarios. Water and Soil 26(4), 953-967. (In Persian).
Benestad, RE., 2004. Empirical-Statistical downscaling in climate modeling EOS. Transactions American Geophysical Union 85(42), 417.
Chang, H., Knight, C.G., Staneva, M.P., Kostov, D., 2002. Water resource impacts of climate change in southwestern Bulgaria. GeoJournal 57, 159-168.
Dong, TY., Dong, WJ., Guo, Y., Chou, JM., Yang, SL., Tian, D., 2018. Future temperature changes over the critical Belt and Road region based on CMIP5 models. Advances in Climate Change Research 9(1), 57-65.
Ferrise, R., Moriondo, M., Bindi, M., 2009. Climate change and projected impacts in agriculture: an example on Mediterranean Crops. Geophysical Research Abstracts 11, 2009-7229.
Harmsen, E., Miller, N.L., Schlegel, N.J., Gonzalez, J.E., 2009. Seasonal climate change impacts on evapotranspiration, precipitation deficit and crop yield in Puerto Rico. Agricultural Water Management 96, 1085-1095.
Heydaritashekaboud, S., Mofidi, A., Heydaritashekaboud, A., 2019. Perspective of Rainfall Variations in Northwestern Iran using Climate Change Circulation Models under Climate Scenarios. Geography and Environmental Hazards Spring 8(29), 133-151. (In Persian).
Hejazizdeh, Z., Fatahi, E., Massahbavani, AR.,  Nasserzadeh, MH., 2012. Consider impact of climate changes on floods by using the atmospheric circulation model (AOGCM). Geography 10(34), 5-24 (In Persian).
IPCC. 2014. Climate change: impacts, adaptation, and vulnerability. Summaries, frequently asked questions, and cross-chapter boxes. Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
Mehrazar, A., Massah Bavani, A., Mashal, M., Rahimikhoob, H., 2018. Assessment of climate change impacts on agriculture of the Hashtgerd Plain with emphasis of AR5 models uncertainty. Irrigation Sciences and Engineering 41(3), 45-59. (In Persian).
Modaresi, F., Araghinejad, Sh., Ebrahimi, K., Kholghi, M., 2010. Regional Assessment of Climate Change Using Statistical Tests: Case Study of Gorganroud-Gharehsou Basin. Water and Soil 24(3), 476-48. (In Persian).
Ouhamdouch, S., Bahir, M., 2017. Climate Change Impact on Future Rainfall and Temperature in Semi-arid Areas (Essaouira Basin, Morocco). Environ Process 4, 975-990.
Parsafar, N., Marofi, S., 2011. Estimation of Soil Temperature from Air Temperature Using Regression Models Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System (Case Study: Kermanshah Region). Water and Soil 21(3), 139 -152. (In Persian).
Rodrıguez Dıaz, J.A., Weatherhead, J.W., Knox, E., Camacho., 2007. Climate change impacts on irrigation water requirements in the Guadalquivir river basin in Spain. Reg Environ Change 7, 149-159.
Roy, K., Rahman, M., Kuman, U., 2009. Future climate change and moisture stress: Impact on crop agriculture in south-western Bangladesh. Climate Change and Development Perspective 1(1), 1-8.
Sharma, A., Goyal, M.K., 2020. Assessment of the changes in precipitation and temperature in Teesta River basin in Indian Himalayan Region under climate change. Atmospheric Research 231, 104-670.
Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., 2013. The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Climate Change 1535.