ارزیابی اثر تغییر اقلیم بر کارامدی شبکۀ حفاظت ایران با تأکید بر خانواده گاوسان و گوزن‌ها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری تنوع زیستی، گروه محیط زیست، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران

2 استادیار گروه محیط زیست، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران

3 دانشیار گروه محیط زیست، دانشکده منابع طبیعی و علوم زمین، دانشگاه کاشان، کاشان، ایران

چکیده

از میان گونه‌های مختلف پستانداران، سه گروه همبوم از خانوادۀ گاوسانان شامل مرال – شوکا، آهو – جبیر و کل و بز – قوچ و میش همواره در برنامه‌های حفاظتی مورد توجه بوده‌اند. پژوهش حاضر با بهره‌گیری از مفهوم مدل‌سازی پراکنش گونه با استفاده از مدل بی‌نظمی بیشینه با هدف شناسایی زیستگاه‌های مطلوب برای این گونه‌ها به انجام رسید. براساس روی‌هم‌گذاری و تجمیع نقشه‌های مطلوبیت زیستگاه گونه‌ها، مناطق داغ تنوع زیستی گونه‌های مورد مطالعه در زمان حاضر شناسایی شد و اثر تغییر اقلیم بر آن تا سال 2050 میلادی ارزیابی شد. نتایج مقایسۀ مساحت مناطق مطلوب در حال حاضر و سال 2050 میلادی نشان داد که همۀ گونه‌ها به‌جز آهو و جبیر، در آینده با کاهش وسعت زیستگاه‌های مطلوب مواجه خواهند شد. دو گونۀ مرال و شوکا، به‌ترتیب با 70 و 61 درصد، بیشترین سطح از زیستگاه‌های مطلوب را تا سال 2050 از دست خواهند داد. ارزیابی کارایی سیستم حفاظتی کشور نشان داد که به‌ترتیب تنها 12 و 18 درصد از مناطق داغ تنوع زیستی (طبقات 4 و 5 غنای گونه‌ای) در حال حاضر و تا سال 2050 تحت پوشش سیستم حفاظتی کشور خواهند بود. به این ترتیب، پژوهش حاضر با شناسایی مناطق داغ تنوع زیستی، به‌عنوان ابزاری مناسب و کاربردی برای برنامه‌ریزی هدفمند حفاظتی در حال حاضر و آینده کاربرد خواهد داشت.

کلیدواژه‌ها

عنوان مقاله [English]

The impact of climate change on the effectiveness of the conservation network with respect to the Bovidae and Cervidae family in Iran

نویسندگان [English]

  • Mahya Khosravi 1
  • Atefeh Chamani 2
  • Rouhollah Mirzaei 3

1 Ph.D student in Biodiversity, Environmental Science Department, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.

2 Assistant Professor,,Environmental Sciences Department, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran.

3 Associate Professor,,Department of Environmental Sciences , Faculty of Natural Resources and Earth Sciences, University of Kashan, Kashan, Iran

چکیده [English]

Among the various species of mammals, three guilds of the Bovidae and Cervidae family, including red deer – roe deer, goitered gazelle – chinkara, and wild goat – mouflon have always been considered as target species in conservation programs. However the impacts of climate change on the effectivness of the conservation areas (CAs) of Iran is poorly understood. The current research using Speceis Distribution Model (SDM) based on MaxEnt model aims at identifying suitable habitats and hotspot areas for these species in the current time and evaluate the impact of climate changes by 2050. Our results showed that all models obtained AUC > 0.8 revealing proper predictive performances. The comparison of the area of suitable habitats for the current time and 2050 showed that all species, except for chinkara and goitered gazelle, will face a reduction in the area of suitable habitats in the future. Among the speceis roe deer and red deer will experience the greatest habitat loss, 70% and 61%, respectively. The evaluation of the effectiveness of the CAs to cover hotspot areas, Class 4 and Class 5 of speceis richness, revealed that only 12% and 18% of hotspots will be covered by the conservation network in the current time and 2050, respectively. Therfore, the present study by identifying hotspots of these species could be considered as an operative tools for the conservation planning of in the current time and future. 

کلیدواژه‌ها [English]

  • Distribution modelling
  • Conservation areas
  • Climate change
  • Bovidae and Cervidae family
  • Conservation planning
Ahmadi, M., Farhadinia, M.S., Cushman, S.A., Hemami, M.R., Nezami Balouchi, B., Jowkar, H., Macdonald, D.W., 2020. Species and space: a combined gap analysis to guide management planning of conservation areas. Landscape Ecology 35, 1505-1517.
Aitken, S.N., Whitlock, M.C., 2013. Assisted gene flow to facilitate local adaptation to climate change. Annual Review of Ecology, Evolution, and Systematics. 44, 367-388.
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., Courchamp, F., 2012. Impacts of climate change on the future of biodiversity. Ecology Letters, 15, 365-377.
Cardillo, M., Mace; G.M., Jones, K.E., Bielby, J., Bininda-Emonds, O.R., Sechrest, W., Purvis, A., 2005. Multiple causes of high extinction risk in large mammal species. Science 309 (5738), 1239-1241.
Carroll, C., Noss; R.F., Paquet, P.C., 2001. Carnivores as focal species for conservation planning in the Rocky Mountain region. Ecological Application 11, 961-980.
Cushman, S.A., McRae, B., Adriaensen, F., Beier, P., Shirley, M., Zeller, K., 2013. Biological corridors and connectivity [Chapter 21]. Key Topics in Conservation Biology 2. . D. Macdonald and K. Willis. Hoboken, NJ:, Wiley-Blackwell, pp: 384-404.
Darvishsefat, A.A., 2006. Atlas of Protected Areas of Iran. University of Tehran, Tehran (In pesrian)
Dormann, C.F., McPherson, J.M., Araujo, M.B., Bivand, R., Bolliger, J., Carl, G., Davies, R.G., Hirzel, A., Jetz, W., Kissling, W.D., 2007. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609-628.
Elith, J., Kearney, M., Phillips, S., 2010. The art of modelling range-shifting species. Methods in Ecology and Evolution 1,330-342.
Farhadinia, M.S.; Ahmadi, M., Sharbafi, E., Khosravi, S., Alinezhad, H., Macdonald, D.W., 2015. Leveraging trans-boundary conservation partnerships: persistence of Persian leopard (Panthera pardus saxicolor) in the Iranian Caucasus. Biological Conservation 191, 770-778.
Fernandes, R.F., Vicente, J.R., Georges, D., Alves, P., Thuiller, W., Honrado, J.P., 2014. A novel downscaling approach to predict plant invasions and improve local conservation actions. Biological Invasions 16, 2577-2590.
Fisher, D.O., Owens, I.P., 2004. The comparative method in conservation biology. Trends in Ecology & Evolution 19(7), 391–398.
Franklin J. 2010. Mapping species distributions: spatial inference and prediction. Cambridge University Press.
Fritz, H., Loreau, M., Chamaillé‐Jammes, S., Valeix, M., Clobert, J., 2011. A food web perspective on large herbivore community limitation. Ecography, 34(2), 196-202.
Garcia, R.A., Cabeza, M., Rahbek, C., Araújo, M.B., 2014. Multiple dimensions of climate change and their implications for biodiversity. Science 344(6183).
García‐Valdés. R., Svenning, J.C., Zavala, M.A., Purves, D.W., Araujo, M.B., 2015. Evaluating the combined effects of climate and land‐use change on tree species distributions. Journal of Applied Ecology, 52, 902-912.
González-Orozco, C.E., Pollock, L.J., Thornhill, A.H., Mishler, B.D., Knerr, N., Laffan, S.W.; Miller, J.T., Rosauer, D.F., Faith, D.P., Nipperess, D.A., 2016. Phylogenetic approaches reveal biodiversity threats under climate change. Nature Climate Change 6: 110.
Guisan, A., Zimmermann, N.E., 2000. Predictive habitat distribution models in ecology. Ecological Modelling, 135, pp: 147–186.
Karami, M., Ghadirian, T., Faizolahi K., 2016. The Atlas of Mammals of Iran. Iran Department of the Environment, Tehran. 292 p. (In pesrian)
Khosravi, R., Hemami, M.R., Malekian, M., Silva, T.L., Rezaei, H.R., Brito, J.C., 2018. Effect of landscape features on genetic structure of the goitered gazelle (Gazella subgutturosa) in Central Iran. Conservation Genetics 19(2), 323-336.
Kolahi, M., Sakai, T., Moriya, K., Makhdoum, M.F., 2012. Challenges to the future development of Iran’s protected areas system. Environmental Management 50, 750-765.
Malakoutikhah, S., Fakheran, S., Hemami, M-R., Tarkesh, M., Senn, J., 2020. Assessing future distribution, suitability of corridors and efficiency of protected areas to conserve vulnerable ungulates under climate change. Diversity and Distributions. 26, 1383-1396.
McMahon, S.M.; Harrison, S.P., Armbruster, W.S., Bartlein, P.J., Beale, C.M., Edwards, M.E. and Prentice, I.C. 2011. Improving assessment and modelling of climate change impacts on global terrestrial biodiversity. Trends in Ecology & Evolution, 26, pp: 249-259.
Michel, S., Ghoddousi, A., 2020. Ovis gmelini. The IUCN Red List of Threatened Species 2020:e.T54940218A22147055.https://dx.doi.org/10.2305/IUCN.UK.20202.RLTS.T54940218A22147055.en.
Parmesan, C., 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics 37, 637-669.
Pearson, R.G., Stanton, J.C., Shoemaker, K.T., Aiello-Lammens, M.E., Ersts, P.J., Horning, N., Fordham, D.A., Raxworthy, C.J., Ryu, H.Y., McNees, J., 2014. Life history and spatial traits predict extinction risk due to climate change. Nature Climate Change 4, 217-221.
Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190, 231-259.
Rabinowitz, A. and Zeller, K.A. 2010. A range-wide model of landscape connectivity and conservation for the jaguar, Panthera onca. Biological Conservation, 143, pp: 939–945.
Rezaei, H.R., Naderi, S., Chintauan-Marquier, I.C., Taberlet, P., Virk, A.T., Naghash, H.R., Rioux, D., Kaboli, M., Pompanon, F., 2010. Evolution and taxonomy of the wild species of the genus Ovis (Mammalia, Artiodactyla, Bovidae). Molecular Phylogenetics and Evolution 54, 315-326.
Robillard, C. M., Coristine, L.E., Soares, R.N., Kerr, J.T., 2015. Facilitating climate-change-induced range shifts across continental land-use barriers. Conservation Biology 29, 1586-1595.
Rödder, D., Lötters, S., 2009. Niche shift versus niche conservatism? Climatic characteristics of the native and invasive ranges of the Mediterranean house gecko (Hemidactylus turcicus). Global Ecology and Biogeography 18, 674-687.
Sergio, F., Newton, I., Marchesi, L., Pedrini, P., 2006. Ecologically justified charisma: preservation of top predators delivers biodiversity conservation. Journal of Applied Ecology 43, 1049-1055.
Syfert, M.M., Joppa, L., Smith, M.J., Coomes, D.A., Bachman, S.P., Brummitt, N.A., 2014. Using species distribution models to inform IUCN Red List assessments. Biological Conservation 177,  174-184.
Taleshi, H., Jalali, S.G., Alavi, S.J., Hosseini, S.M., Naimi, B., Zimmermann, N.E., 2019. Climate change impacts on the distribution and diversity of major tree species in the temperate forests of Northern Iran. Regional Environmental Change 19(8), 2711-2728.
Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., Williams, S.E., 2004. Extinction risk from climate change. Nature 427(6970), 145.
Tingley, R., Vallinoto, M., Sequeira, F., Kearney, M.R., 2014. Realized niche shift during a global biological invasion. Proceedings of the National Academy of Sciences 111, 10233-10238.
Van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.C., Kram, T., Krey, V., Lamarque, J.F., Masui, T., 2011. The representative concentration pathways: an overview. Climatic Change 109(1-2), 5.
Visconti, P.; Butchart, S.H., Brooks, T.M., Langhammer, P.F., Marnewick, D., Vergara, S., Yanosky, A., Watson, J.E., 2019. Protected area targets post-2020. Science 364, 239-241.
Yousefi, M.; Ahmadi, M., Nourani, E., Behrooz, R., Rajabizadeh, M., Geniez, P., Kaboli, M., 2015. Upward Altitudinal Shifts in Habitat Suitability of Mountain Vipers since the Last Glacial Maximum. PloS One 10(9), e0138087.
Ziaie, H., 2011. A field guide to the mammals of Iran. Iran Wildlife Center, 432 pages (In pesrian)
Zhang, C., Zhu, R., Sui, X., Chen, K., Li, B., Chen, Y., 2020. Ecological use of vertebrate surrogate species in ecosystem conservation. Global Ecology and Conservation 24, e01344.
Ziaie, H., 2008. A Field Guide to The Mammals of Iran. 1th Edition, Iran Wildlife Center, Tehran.