بررسی پتانسیل شاخص های رطوبت خاک در پایش بیابان زایی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی نقشه برداری، دانشکده مهندسی عمران، دانشگاه تربیت دبیر شهید رجایی

چکیده

در این تحقیق از سری زمانی تصاویر ماهواره ای لندست در دو بازه‌ زمانی با فاصله 15 سال، بین سالهای 1381 تا 1396 به منظور پایش بیابان زایی استفاده شده است. برای هر بازه زمانی تعداد چهار تصویر با فاصله‌ یک ماه از یکدیگر برای ماه‌های اردیبهشت، خرداد، تیر و مرداد از منطقه دشت قزوین اخذ گردید. پس از اعمال پردازش های اولیه بر روی تصاویر و انجام قطعه بندی، چهار کلاس عارضه بیابان، پوشش گیاهی، خاک مرطوب و سایر عوارض به روش شیء مبنا و مبتنی بر تعریف شاخص های طیفی رطوبت خاک تشخیص داده شدند. سپس، نتایج طبقه بندی شیء مبنای تصاویر اخذ شده در هر سال به روش رأی گیری در سطح تصمیمات با یکدیگر ادغام شدند تا یک نقشه طبقه بندی نهایی برای هر یک از سال های 1381 و 1396 بدست آید. مقایسه بین دو نقشه طبقه بندی نهایی حاصل از ادغام تصمیمات، تغییرات صورت گرفته در کلاس عوارض را در این بازه زمانی 15 ساله آشکار نمود. نتایج بدست آمده از این تحقیق بیانگر تغییرات منفی و از بین رفتن میزان قابل توجهی از پوشش گیاهی و خاک مرطوب در این بازه زمانی و همچنین تغییرات مثبت و رشد مناطق بیابانی طی این سال ها در دشت قزوین است.

کلیدواژه‌ها

عنوان مقاله [English]

Investigating the potential of soil moisture indices for desertification monitoring

نویسندگان [English]

  • Fatemeh Tabib Mahmoudi
  • Nahid Ghasemi

چکیده [English]

In the development of a country, natural resources and the environment are of great importance. Given the fact that Iran is one of the developing countries, and in terms of semi-desert vegetation, for sustainable development, we must pay special attention to the issue of the environment, including desert and desertification. Wilderness monitoring and desertification require extensive and continuous studies. Remote sensing technology can play a significant role in our studies due to the high regional use of satellite imagery along with temporal resolution and less cost, and time consuming than field study. In this thesis, satellite images of Landsat-7, ETM + and Landsat-8, OLI with time series were used in two time intervals of 15 years between 2002 and 2017. For each series, four images were taken with one month interval from each other, Of the months May, Jun, Julay and August from Qazvin plain area. After performing preprocessing on images, images were classified into four classes desert, vegetation, wet soil and otherobjedcts based on the spectral features and performing object based image analysis. After determining the classes for each of the four images per one year, classifier fusion was done based on the voting method. A final image was obtained from all four images in each year. Finally, detection of the changes between the two final classification results of 2002 and 2017 was performed, and the change map generated for desertification in the study area during these 15 years. Which reflects the desertification and rising deserts and the destruction of vegetation and soil moisture significant during these years in this plain.

کلیدواژه‌ها [English]

  • Desertification
  • Change detection
  • Object Based Image Analysis
  • Landsat Images
Anne, N., Abd-Elrahman, A., Lewis, D., Hewitt, N., 2014. Modeling soil parameters using hyperspectral image reflectance in subtropical coastal wetlands. Int. J. Appl. Earth Obs. Geoinform 33, 47-56.
Bartsch, A., Trofaier, A., Hayman, G., Sabel, D., Schlaffer, S., & Clark, D., 2012. Detection of open water dynamics with ENVISAT ASAR in support of land surface modelling at high latitudes. Biogeosciences 9(2), 703-714.
Carlson, T., Dodd, J., Benjamin, S., Cooper, J., 1981. Satellite estimation of the surface energy balance,moisture availability and thermal inertia.. Journal of Applied Meteorology and Climatology 20(1), 67-81.
De Jeu, R., Holmes, T., Parinussa, R., Owe, M., 2014. A spatially coherent global soil moisture product with improved temporal resolution.  Journal of Hydrology 516, 284-296.
Filion, R., Bernier, M., Paniconi, C., Chokmani, K.,  Melis, M.,  Soddu, A.,  Talazac, M.,  Lafortune, F.X., 2016.  Remote sensing for mapping soil moisture and drainage potential in semi-arid regions: Applications to the Campidano plain of Sardinia. Science of the Total Environment 543. 862-876, doi: 10.1016/j.scitotenv.2015.07.068.
Kuncheva, L., 2014. Combining Pattern Classifiers methods and algorithms. Wiely publication, ISBN: 978-1-118-31523-1, 384.
Liu, Y., Dorigo, W.,  Parinussa, R., De Jeu, R.,  Wagner, W., McCabe, M., 2012. Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sensing of Environment 123, 280-297.
Minacapilli, M., Agnese, C., Blanda, F., Cammalleri, C., Ciraolo, G., Urso, G., Iovino, M., Pumo, D.  Provenzano, G., Rallo. G., 2009. Estimation of actual evapotranspiration of Mediterranean perennial crops by means of remote sensing based surface energy balance models. Hydrology and Earth system sciences 13, 1061-1074.
Narayan, U.,  Lakshmi, V., Jackson, T.. 2006. High-resolution change estimation of soil moisture using L-band radiometer and radar observations made during the SMEX02 experiments. IEEE Transactions on Geoscience and Remote Sensing 44, 1545-1554.
Owe, M., Jeu, R., Walker, J., 2001. A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Transactions on Geoscience and Remote Sensing 39, 1643-1654.
Pan, M., Sahoo, A., Wood, E., 2014. Improving soil moisture retrievals from a physically-based radiative transfer model. Remote Sensing of environment140, 130-140.
Petropoulos, G., Carlson, T., 2011. Retrievals of turbulent heat fluxes and soil moisture content by Remote Sensing. In Advances in Environmental Remote Sensing: Sensors, Algorithms, and Application, CRC press, 469-502.
Prieto-Amparan, J., Villarreal-Guerrero, F.,  Martinez-Salvador, M.,  Manjarrez-Domínguez, C.,  Santellano-Estrada, E.,  Pinedo-Alvarez, A., 2018. Atmospheric and Radiometric Correction Algorithms for the Multitemporal Assessment of Grasslands Productivity. Remote Sensing 10, 219.
Qin, J., Yang, K., Lu, N., Chen, Y., Zhao, L., Han, M., 2013. Spatial upscaling of in-situ soil moisture measurements based on MODIS-derived apparent thermal inertia. Remote Sensing of Environment 138, 1-9.
Rezaee, M., Karami, Gh., Monfared, N., 2017. Geographical Concepts, Foundations and Strategies for Combating Desertification with Emphasis on Sustainable Human Development. Quarterly Journal of Geography (Regional Planning) 7, 167-192 (In Persian).
Samadzadegan, F. Tabib Mahmoudi, F, Bigdeli, B. “Data fusion in remote sensing concepts and techniques”, Tehran, Tehran university press, 2014.
Tabib mahmoudi, F., 2014. Decision level fusion based on multi views object based image analysis for object recognition in urban areas. PhD Thesis, university of Tehran.
Vereecken, H., Huisman, J., Pachepsky, Y., Montzka, C., van der Kruk, J., Bogena, H., Weihermüller, L., Herbst, M., Martinez, G., Vanderborght, J., 2014. On the spatio-temporal dynamics of soil moisture at the field scale. Journal of Hydrology 516, 76-96.  
Zhang, D., Tang, R., Zhao, W., Tang, B., Wu, H., Shao, K., 2014. Surface soil water content estimation from thermal remote sensing based on the temporal variation of land surface temperature. Remote Sens 6, 3170-3187.
Zhang, D., Zhou, G., 2016. Estimation of soil moisture from optical and.thermal remote sensing: areview. Sensors 16.
Zhao, H., 2009. Effect of desertification on organic C and N contect in study farmland and grassland of Inner Mongolia. Catena 77, 187-191.