بررسی رابطه دمای سطحی و الگوی مکانی سرزمین با بکارگیری مدل های رگرسیونی و سنجه های سیمای سرزمین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه تهران، دکترای محیط زیست

2 گروه محیط زیست، دانشکده منابع طبیعی، دانشگاه تهران، ایران

چکیده

با توجه به آثار منفی افزایش دمای مناطق انسان ساخت روی مصرف انرژی و رفاه انسانی، جبران این اثرات منفی از طریق کنترل الگوی پوشش های سبز و اثر خنک کنندگی آن از اهمیت زیادی برخودار است. هدف از این مطالعه تعیین مناسب ترین رابطه رگرسیونی الگوی مکانی سرزمین با دمای سطحی شهرستان رشت بوده است و بدین منظور از سنجه های سیمای سرزمین به عنوان متغیرهای ورودی به مدل سازی استفاده شد. کاربری/ پوشش و دمای سطحی زمین با استفاده از طبقه بندی تصویر سنجنده های OLI/TIRS خرداد ماه سال 1397 ماهواره لندست 8 نقشه سازی شدند. سپس سنجه های ترکیب و پیکره بندی محاسبه و در نهایت مدل های رگرسیونی مختلف برازش یافته و با هم مقایسه شدند. نتایج نشان داد گرچه هر چهار مدل خطی، لگاریتمی، نمایی و توانی کارایی مناسبی در پیش بینی دمای سطحی از طریق سنجه های سیمای سرزمین دارند، ولی بیشترین کارایی در منطقه مطالعاتی مربوط به مدل توانی است و این موضوع متاثر از الگوی چیدمان پوشش زمین در منطقه است.

کلیدواژه‌ها

عنوان مقاله [English]

Investigating the Relationship between Land Surface Temperature and Landscape Spatial Pattern by Using Regression Models and Landscape Metrics

نویسندگان [English]

  • Bahman Jabbarian Amiri 1
  • Seyed Sadeq Dezhkam 2

1

2 Department of Environment, Faculty of Natural Resources, University of Tehran, Iran

چکیده [English]

Due to the negative effects of built up area temperature on energy consumption and human welfare, it is important to mitigate these negative effects by controlling the spatial pattern of green cover and its cooling effect. Therefore, in order to reveal the type and shape of relationship between landscape spatial patterns with land surface temperature (LST) in Rasht, the statistical modeling approach and landscape metrics were used. Land use- land cover and LST mapping were performed using Landsat sensor imagery classification and finally calculated landscape metrics of entered into the modeling process. Validation results showed that although all four linear, logarithmic, exponential and power regression models have good performance in predicting LST through land cover metrics, the highest performance was related to power model. In addition, this models indicate LST is strongly correlated with near distance to green patch and near distance to water patch metrics.

کلیدواژه‌ها [English]

  • Land Surface Temperature
  • Landscape Pattern
  • Regression
  • Rasht County
Afrakhteh, R., Asgarian, A., Sakieh, Y., Soffianian, A.2016, Evaluating the strategy of integrated urban-rural planning system and analyzing its effects on land surface temperature in a rapidly developing region. Habitat International (56). 147-156.
Aghayari, A., 2013. Study of urban greenspace and impervious surface on Isfahan city thermal pattern. University of Isfahan M.Sc. dissertation 113 p. (in Persian)
Alavipanah, S., Ghoreishi, S., Shamsipour, A., 2016. The cooling effect of urban green spaces: A case study of Monikh city. Journal of Environmental Studies (42). 441-453. (in Persian)
Artis, D.A., Carnahan W.H., 1982. Survey of emissivity variability in thermography of urban areas. Remote Sensing of Environment (12). 313–329.
Asgarian, A., Amiri, B.J., Sakieh, Y., 2015. Assessing the effect of green cover spatial patterns on urban land surface temperature using landscape metrics approach. Urban Ecosyst (18). 209-222.
Dezhkam, S., 2013. Analysis of trend and pattern of urban growth using landscape ecology approach (case study: Rasht County). Dissertation, University of Tehran, 128pp. (in Persian).
Estoque, R., Murayama, Y., Myint, S., 2016. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Science of the Total Environment (577). 349-359.
Gartland, L., 2008. Heat islands, understanding and mitigating heat in urban areas. Earthscan, Print.
hasani sangani, M., Jabbarian Amiri, B., Shabani, A, Sakieh, Y., Ashrafi, S., 2014. Modeling relationships between catchment attributes and river water quality in southern catchments of the Caspian Sea. Environmental Science and Pollution Research (22). 4985-5002.
Jabbarian Amiri, B., 2013. Environmental Modelling. Univercity of Tehran Press.139 p. (in Persian)
Jafari, E. 2017. Investigating the relationship between ecological structure of Neyshabour city and thermal island pattern emphasizing on the landscape ecology approach. Journal of natural environment (96). 295-308 (in Persian)
Li, J., Song, C., Cao, L., Zhu, F., Meng, X., Wu, J., 2011. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sensing of Environment (115) .3249–3263.
Liu, Huimin., Zhan, Q., Gao, S,  Yang, C., 2019. Seasonal Variation of the Spatially Non-Stationary Association between Land Surface Temperature and Urban Landscape. Remote Sensing (11).
Maimaitiyiming, M., Ghulam,A., Tiyip, T., Pla, F., Latorre-Carmona, P., Halik ,U., Sawut M., Caetano ,M., 2014. Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation, ISPRS Journal of Photogrammetry and Remote Sensing 89 .59–66P.
Maroofnezhad, A., 2011. The impact of urban land use on the creation of thermal islands. Iranian Journal of Amayesh mohit (14). 65-90. (in Persian)
Mc Garigal, K., and Marks, B.J., 1995.FRAGSTATS: spatial pattern analysis program for quantifying landscape structure, USDA Forest Service.
Naveh, Z., Liberman, A.S., 1984. Landscape ecology: theory and application. Springer-Verlag, New York, NY.
Oke, T.R., 1982. The Energetic Basis of the Urban Heat Island. Quarterly Journal of the Royal Meteorological Society. 108:1-24.
Rouhi, H., Chamani, N., Jafarnezhad, J., Asgarian, A., 2018. Spatial assessment of the effects of in situ and neighbourhood factors on urban land surface temperature mitigation in a rapidly developing region, International Journal of Urban Sustainable Development, 10:3, 292-304.
Santhi, C., Arnold, J., Williams, J.R., Dugas, W.A., Srinivasan, R., Hauck, L.M., 2001. Validation of the SWAT Model on a Large River Basin with Point and Nonpoint Sources. JAWRA Journal of the American Water Resources Association (37). 1169 - 1188.
Sasanpour, F., Zeyaeian, P., Bahadori, M. 2013. Investigating the relationship between land use and thermal islands in Tehran. Iranian Journal of Geography (39). 256-270 (in Persian)
Schwartz, N., Schlink, U., Franck, U., Grossmann, K., 2012. Relationship of land surface and sir temperatures and its implications for quantifying urban heat island indicators-An application for the city of Leipzig (Germany). Ecological Indicators (18). 693-704.
Sobrino, J., Jiménez, C., Paolinib, M., 2004. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens Environ (90).434–440.
Zare chahooki, M., 2010. Data analysis in natural resources research using SPSS software. Jahad Daneshgahi publication, 310 p.  (in Persian)