تبارشناسی و تنوع ژنتیکی لاک‌پشت برکه‌ای خزری (Mauremys caspica Gmelin, 1774) در استان چهارمحال و بختیاری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه شیلات و محیط زیست، دانشکده منابع طبیعی و علوم زمین، دانشگاه شهرکرد

2 استادیار گروه شیلات و محیط زیست، دانشکده منابع طبیعی و علوم زمین، دانشگاه شهرکرد

چکیده

لاک‌پشت‌ها از قدیمی‌ترین خزندگان هستند که از حدود 215 میلیون سال پیش در زمین حضور داشته‌اند. تاکنون 351 گونه لاک‌پشت در جهان گزارش شده است که حدود 40 درصد آنها در فهرست سرخ IUCN به عنوان گونه‌های در تهدید معرفی شده‌اند. لاک‌پشت برکه‌ای خزری (Mauremys caspica) در شمال و غرب ایران پراکنش به نسبت گسترده‌ای دارد. ادامه حیات این گونه در بسیاری از زیستگاه‌های کشور به‌واسطه عوامل متعددی از جمله تخریب زیستگاه، آلودگی‌ها و نابسامانی در مدیریت منابع آب به شدت در معرض تهدید است. در این پژوهش، تنوع ژنتیکی و تبارشناسی لاک‌پشت برکه‌ای خزری در استان چهارمحال و بختیاری مورد بررسی قرار گرفت. به این منظور، بخشی از توالی ژن سیتوکروم b (به طول 1040 جفت باز) در 12 فرد از این استان برای بررسی روابط تبارشناختی و تنوع ژنتیکی استفاده شد. همچنین، 15 توالی لاک‌پشت برکه‌ای خزری و هشت توالی لاک‌پشت برکه‌ای بالکان (M. rivulata) از بانک ژن استخراج و در تحلیل‌ها استفاده شدند. یافته‌های حاصل نشان دادند که لاک‌پشت‌های خزری دو کلاد مجزا (کلاد شرقی و کلاد غربی) تشکیل داده و با بوت استرپ و احتمال پسین بالا از لاک‌پشت‌های بالکان جدا می‌شوند. همچنین، نمونه‌های متعلق به این استان همگی در کلاد شرقی قرار گرفته و فقط به یک هاپلوتایپ (MCE2) اختصاص داشتند. بر اساس تحلیل AMOVA، اختلاف ژنتیکی بین کلادهای شرقی و غربی (12/82 درصد) بیش از اختلاف ژنتیکی در داخل این کلادها (88/17 درصد) برآورد شد. نشانه‌های معنی‌داری از گسترش جمعیت‌شناختی ناگهانی در کلادهای غربی و شرقی لاک‌پشت خزری برآورد نشد. این نتایج پیشنهاد می‌کند که بر اساس توالی‌های ژن سیتوکروم b، لاک‌پشت برکه‌ای خزری در این استان به یک واحد حفاظتی تعلق داشته و می‌تواند برای حفاظت بهتر از گونه در دستور کار مدیران حفاظت از محیط زیست استان قرار گیرد.

کلیدواژه‌ها

عنوان مقاله [English]

Phylogeny and genetic diversity of Caspian pond turtle (Mauremys caspica Gmelin, 1774) in Chaharmahal va Bakhtiari province, Iran

نویسندگان [English]

  • Behnam Jazayeri 1
  • Mohammad Reza Ashrafzadeh 2
  • Rohollah Rahimi 1
  • Iraj Hashemzadeh segherloo 1

1 Department of Fisheries and Environmental Sciences, Faculty of Natural Resources and Earth Sciences, Shahrekord University, Shahrekord 88156-48456, Iran

2 Department of Fisheries and Environmental Sciences, Faculty of Natural Resources and Earth Sciences, Shahrekord University, Shahrekord, Iran

چکیده [English]

The earliest known turtles are from around 215 million years ago, making turtles one of the oldest reptile groups. So far, about 351 turtle species have been reported worldwide, of which about 40% have been introduced as threatened species in the IUCN Red List. Caspian pond turtle (Mauremys caspica) has a relatively wide distribution in the northern and western Iran. Survival of this species has been severely threatened due to habitat destruction, pollution, and water resource mismanagement in Iran. Here, we investigated the genetic diversity and phylogeny of M. caspica in Chaharmahal va Bakhtiari province. A 1040-bp fragment of the cytochrome b gene was sequenced in 12 individuals across the province. A dataset was created using our sequences together with an additional 23 sequences downloaded from GenBank. Based on phylogenetic trees (maximum likelihood and Bayesian inference), the sequences of M. caspica and M. rivulata were separated with the highest bootstrap and posterior probability. All Caspian pond turtle's sequences fell into two clades: Eastern and Western. The findings revealed that turtles from Chaharmahal va Bakhtiari belong to only one haplotype (MCE2) within the eastern clade. The AMOVA analysis, based on Caspian pond turtle's sequences, show that 82.12% of the overall variation is estimated among the identified clades (Eastern and Western). None of the neutrality indices (Fu’s FS، Tajima’s D and Ramos-Onsins and Rozas’ R2) revealed negative and significant values, and thus, the sudden demographic expansion was rejected in the clades of M. caspica. Caspian pond turtle population, based on cytochrome b, in the study area can be regarded to an evolutionarily significant unit.

کلیدواژه‌ها [English]

  • Mauremys caspica
  • cytochrome b
  • haplogroup
  • genetic distance
  • genetic diversity
Ashrafzadeh, M.R., Kaboli, M., Naghavi, M.R., 2016. Mitochondrial DNA analysis of Iranian brown bears (Ursus arctos) reveals new phylogeographic lineage. Mammalian Biology, 81, 1–9.
Ashrafzadeh, M.R., Djan, M., Szendrei, L., Paulauskas, A., Scandura, M., Bagi, Z., Ilie, D.E., Kerdikoshvili, N., Marek, P., Soós, N., Kusza, S., 2018. Large-scale mitochondrial DNA analysis reveals new light on the phylogeography of Central and Eastern-European Brown hare (Lepus europaeus Pallas, 1778). PloS ONE, 13, p.e0204653.
Avise, J.C., 2000. Phylogeography: The History and Formation of Species. Harvard University Press, MA, USA.
Avise, J.C., 1994. Molecular markers, Natural History and Evolution. Chapman and Hill, New York.
Bandelt, H.J., Forster, P., Röhl, A., 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37–48.
Barth, D., Bernhard, D., Fritzsch, G., Fritz, U., 2004. The freshwater turtle genus Mauremys (Testudines, Geoemydidae) – a textbook example of an east–west disjunction or a taxonomic misconcept? Zoologica Scripta, 33, 213–221.
Clement, M., Posada, D.C.K.A., Crandall, K.A., 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9, 657–1659.
Excoffier, L., Lischer, H.E., 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Eesources, 10, 564–567.
Fritz, U., Wischuf, T., 1997. Zur Systematik westasiatischsu ¨dosteuropa¨ischer Bachschildkro ¨ten (Gattung Mauremys). Zoologische Abhandlungen, 49, 223–260.
Fritz, U., Auer, M., Bertolero, A., Cheylan, M., Fattizzo, T., Hundsdörfer, A.K., Martín Sampayo, M., Pretus, J.L., Široký, P., Wink, M., 2006. A rangewide phylogeography of Hermann's tortoise, Testudo hermanni (Reptilia: Testudines: Testudinidae): implications for taxonomy. Zoologica Scripta, 35, 531–543.
Fritz, U., Ayaz, D., Buschbom, J., Kami, H.G., Mazanaeva, L.F., Aloufi, A.A., Auer, M., Rifai, L., Šilić, T., Hundsdörfer, A.K., 2008. Go east: phylogeographies of Mauremys caspica and M. rivulata–discordance of morphology, mitochondrial and nuclear genomic markers and rare hybridization. Journal of Evolutionary Biology, 21, 527–540.
Kusza, S., Ashrafzadeh, M.R., Tóth, B., Jávor, A., 2018. Maternal genetic variation in the northeastern Hungarian fallow deer (Dama dama) population. Mammalian Biology, 93, 21–28.
Lacy, R.C., 1997. Importance of genetic variation to the viability of mammalian populations. Journal of Mammalogy, 78, 320–335.
Librado, P., Rozas, J., 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451–1452.
Lovich, J.E., Yasukawa, Y., Ota, H., 2011. Mauremys reevesii (Gray 1831)–Reeves’ turtle, Chinese three-keeled pond turtle. Chelonian Research Monographs, 5, 1–10.
Mozaffari, O., Kamali, K., Fahimi, H., 2014. The Atlas of Reptiles of Iran. Iran Department of the Environment, Tehran, 362 p.
Nei, M., Kumar, S., 2000. Molecular evolution and phylogenetics. Oxford University Press. USA, 333 p.
Nguyen, L.T., Schmidt, H.A., von Haeseler, A., Minh, B.Q., 2014. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular biology and evolution, 32, 268–274.
Noda, H., Kamata, N., 2004. Relationships between population traits and food habits in aquatic turtles. Bulletin of the Herpetological Society of Japan, 2004, 123–133.
Ojeda, A., 2010. Phylogeography and genetic variation in the South American rodent Tympanoctomys barrerae (Rodentia: Octodontidae). Journal of Mammalogy, 91, 302–313.
Ramírez-Soriano, A., Ramos-Onsins, S.E., Rozas, J., Calafell, F., Navarro, A., 2008. Statistical power analysis of neutrality tests under demographic expansions, contractions and bottlenecks with recombination. Genetics, 179, 555–567.
Ramos-Onsins, S.E., Rozas, J., 2002. Statistical properties of new neutrality tests against population growth. Molecular Biology and Evolution, 19, 2092–2100.
Rastegar-Pouyani, N., Kami, H., Rajabzadeh, M., Shafiei, S., Anderson, S.C., 2008. Annotated checklist of amphibians and reptiles of Iran. Iranian Journal of Animal Biosystematics, 4, 43–66.
Ricklefs, R.E., Schluter, D., 1993. Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press, Chicago, 414 p.
Rogner, M., 2009. European pond turtles. The genus Emys. Chelonian Library, Frankfurt am Main, Germany, Edition Chimaira, 270 p.
Ronquist, F., Huelsenbeck, J.P., 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.
Safaei-Mahroo, B., Ghaffari, H., Fahimi, H., Broomand, S., Yazdanian, M., Najafi-Majd, E., Hosseinian Yousefkhani, S.S., Rezazadeh, E., Hosseinzadeh, M.S., Nasrabadi, R., Rajabizadeh, M., 2015. The herpetofauna of Iran: checklist of taxonomy, distribution and conservation status. Asian Herpetological Research, 6, 257–290.
Spinks, P.Q., Shaffer, H.B., Iverson, J.B., McCord, W.P., 2004. Phylogenetic hypotheses for the turtle family Geoemydidae. Molecular Phylogenetics and Evolution, 32, 164–182.
Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30, 2725–2729.
Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.
Vamberger, M., Stuckas, H., Ayaz, D., Graciá, E., Aloufi, A.A., Els, J., Mazanaeva, L.F., Kami, H.G., Fritz, U., 2013. Conservation genetics and phylogeography of the poorly known Middle Eastern terrapin Mauremys caspica (Testudines: Geoemydidae). Organisms Diversity and Evolution, 13, 77–85.
Van Dijk, P.P., Iverson, J.B., Rhodin, A.G.J., Shaffer, H.B. Bour, R., 2014. Turtles of the World, 7th Edition: Annotated Checklist of Taxonomy, Synonymy, Distribution with Maps, and Conservation Status. Páginas: 1–151. En: Rhodin, A. G. J., Pritchard, P. C. H., van Dijk, P. P., Saumure, R. A., Buhlmann, K. A., Iverson, J. B. y Mittermeier, R. A. (Eds.). Conservation Biology of Freshwater Turtles and Tortoises: A Compilation Project of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group. Chelonian Research Foundation.
Weir, B.S., Cockerham, C.C., 1984. Estimating F‐statistics for the analysis of population structure. Evolution, 38, 1358–1370.
Xia, X., Xie, Z., Salemi M., Chen, L., Wang, Y., 2003. An index of substitution saturation and its application. Molecular Phylogenetics and Evolution, 26, 1–7.
Xia, X., 2013. DAMBE5: A comprehensive software package for data analysis in molecular biology and evolution. Molecular Biology and Evolution, 30, 1720–1728.
Yadollahvand, R., Kami, H.G., 2014. Habitat changes and its Impacts on the Caspian Pond Turtle (Mauremys caspica) Population in the Golestan and Mazandaran Provinces of Iran. Journal of Aquaculture Research and Development, 5, 2–3.
Yazarloo, M., Kami, H.G., Bagherian Yazdi, A., 2017. Sexual dimorphism and morphometric study of Caspian pond turtle, Mauremys caspica, (Testudines: Geoemydidae) in Golestan Province, southeast of the Caspian Sea. Caspian Journal of Environmental Sciences, 15, 321–334.