بررسی و ارزیابی وضعیت جزیره حرارتی کلان‌شهر تهران با استفاده از تصاویر ماهواره‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مدرس گروه معماری دانشگاه بناب و دانشجوی دکتری

2 دانشگاه آزاد اسلامی واحد تبریز

چکیده

جزیره حرارتی شهر یکی از بارزترین پیامدهای گسترش شهرنشینی و توسعه کلان‌شهرها است. اثرات ناشی از شکل‌گیری جزیره‌های حرارتی می‌تواند نقشی اساسی و مهم در کیفیت هوا و به تبع آن سلامت عمومی ایفا می‌نماید. پژوهش حاضر با هدف بررسی نقش پوشش عناصر سطح زمین در تغییرات اقلیمی دما در کلان‌شهر تهران صورت پذیرفته است. در این مطالعه، اطلاعات مورد نیاز از باندهای‌های 10 و 11 سنجنده‌های OLI و TIRS ماهواره لندست 8 در دو دوره تابستان و زمستان سال 2017 مورد بررسی قرار گرفته است. برای بررسی وضعیت جزیره حرارتی، از طبقات تک باند برای بررسی توزیع دمای سطح زمین در محدوده تهران و تعیین اثرات محلی جزیره حرارتی در سطح این شهر استفاده شد. در ادامه همبستگی دمای سطح زمین با شاخص پوشش گیاهی تفاضل نرمال شده، شاخص ساخت و ساز، شاخص زمین بایر و شاخص آببرای تعیین اثرات زمین سبز، لخت، آبی و مسکونی بر روی جزیره حرارتی به دست آمد. نتایج نشان داد که اثر جزیره حرارت شهری بیشتر در مناطق شمالی این شهر قرار داشته که ناشی از وجود شهرک صنعتی و توپوگرافی کوهستانی است. همچنین بین دمای سطح زمین و شاخص پوشش گیاهی تهران ارتباط وجود دارد به‌نحوی‌که با کاهش پوشش گیاهی میزان دمای سطح این شهر، افزایش یافته است. در نهایت با توجه به یافته‌های پژوهش پیشنهاد‌های کاربردی ارائه شده است.

کلیدواژه‌ها

عنوان مقاله [English]

Investigation and evaluation of thermal island status of Tehran metropolis, using satellite imagery

نویسندگان [English]

  • Ali Majnouni- Toutakhane 1
  • Mohammad Ebrahim Ramazani 2

1 Department of art and architecture, University of Bonab

2 Islamic University of Tabriz Branch

چکیده [English]

The island's thermal city is one of the most prominent consequences of the expansion of urbanization and metropolitan development. The effects of the formation of thermal islands can play an important role in air quality and, consequently, in general health. The purpose of this study was to investigate the role of surface coatings on climate change in Tehran metropolis. In this study, the required data from the 10 and 11 bands of OLI and TIRS sensors of Satellite Landsat 8 in the summer and winter of 2017 are used. To study the thermal island status, single-band classes were used to study the distribution of ground temperature in the Tehran area and determine the local effects of Thermal Island in the city. Based on research findings, surface temperature and variables vegetation cover, city structural features and wasteland area, normal difference it was obtained to determine the effects of green, bare, blue and residential land on thermal island. The results showed that the effect of Isle of Man in the northern regions of the city is due to the existence of industrial township and mountain topography. There is also a correlation between ground temperature and Tehran's vegetation index, as the surface temperature of the city has increased with decreasing vegetation. Finally, according to research findings, practical proposals have been presented.

کلیدواژه‌ها [English]

  • Landsat8
  • Earth surface temperature
  • Urban Thermal Island
  • Tehran Metropolis
Adegoke, C. and A. Sojobi. 2015. "Climate change impact on infrastructure in Osogbo metropolis, south-west Nigeria." Journal of Emerging Trends in Engineering and Applied Sciences 6(3), 156-167.
Amawa, S. 2017. "Assessment of Health Related Impacts of Urban Heat Island (UHI) in Douala Metropolis, Cameroon." World Journal of Applied Environmental Chemistry 2(2), 54-60.
Asgarian, A. Amiri, B. J. & Sakieh, Y. 2015. Assessing the effect of green cover spatial patterns on urban land surface temperature using landscape metrics approach. Urban Ecosystems, 18(1), 209-222.
Chen, X.L. Zhao, H.M. Li, P.X. & Yin, Z.Y. 2006. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes, Remote Sensing of Environment.104, 133–146.
Estoque, R. C. Murayama, Y. & Myint, S. W. 2017. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Science of the Total Environment 577, 349-359.
Fan, Y. Li, Y. & Yin, S. 2018. Interaction of multiple urban heat island circulations under idealised settings. Building and Environment, 134, 10-20.
Feng, H. Zhao, X. Chen, F. & Wu, L. 2014. Using land use change trajectories to quantify the effects of urbanization on urban heat island. Advances in Space Research 53(3), 463-473.
Gao, Z. Bresson, R. Qu, Y. Milliez, M. de Munck, C. & Carissimo, B. 2018. High resolution unsteady RANS simulation of wind, thermal effects and pollution dispersion for studying urban renewal scenarios in a neighborhood of Toulouse. Urban Climate, 23, 114-130.
Karkon-Sistani, Marzieh. Doustan, Reza. 2014. Thermal island of Mashhad metropolitan. Journal of Geography and Spatial development 2(2), 123-138.
Li, H. Zhou, Y. Li, X. Meng, L. Wang, X. Wu, S. & Sodoudi, S. 2018. A new method to quantify surface urban heat island intensity. Science of the Total Environment, 624, 262-272.
Lin, C.Y. Chen, W.C. Chang, P.L. & Sheng, Y.F. 2011. Impact of the urban heat island effect on precipitation over a complex geographic environment in northern Taiwan. Journal of Applied Meteorology and Climatology 50(2), 339-353.
Liu, L. & Zhang, Y. 2011. Urban heat island analysis using the Landsat TM data and ASTER data: A case study in Hong Kong. Remote Sens 3(7):1535-1552.
Mallick, J. Kant, Y. & Bharath, B.D. 2008. Estimation of land surface temperature over Delhi using Landsat ETM+.  Journal of Indian Geophysics Union 12(3),131–140.
Mallick, J. Kumar Singh, C. Shashtri, S. Rahman, A. & Mukherjee, S. 2012. Land surface emissivity retrieval based on moisture index from LANDSAT TM satellite data over heterogeneous surfaces of Delhi city. International Journal of Applied Earth Observation and Geoinformation 19, 348-358.  
Mushore, T. D. Mutanga, O. Odindi, J. & Dube, T. 2017. Assessing the potential of integrated Landsat 8 thermal bands, with the traditional reflective bands and derived vegetation indices in classifying urban landscapes. Geocarto International 32(8), 886-899.
Norman, J. M. 1995. Algorithms for extracting information from remote thermal-IR observation of the earth surface. Remote Sensing environment 51, 157-168.
Qin, Z. Karnieli, A. & Berliner, P. 2001. A mono-window algorithm for retrieving land surface temperature from LANDSAT TM data and its application to the Israel–Egypt border region. International Journal of Remote Sensing 22(18), 3719–3746.
Sharma, A. Conry, P. Fernando, H. Hamlet, A. F. Hellmann, J. & Chen, F. 2016. Green and cool roofs to mitigate urban heat island effects in the Chicago metropolitan area: Evaluation with a regional climate model. Environmental Research Letters 11(6), 064004.
Sobrino, J.A. Jimenez- Munoz, J.C. & Paolini, L. 2004. Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment 90 (4), 434–440.
Sobrino, J.A. Li, Z.L. Stoll, M.P. & Becker, F. 1996. Multi- channel and multi-angle algorithms for estimating sea and land surface temperature with ATSR data. Int J Remote Sens 17 (11), 2089–2114.
Streutker, D.R. 2002. A remote sensing study ofthe urban heat island of Houston, Texas. Int. J. Remote Sens 23:2595-2608.
Sun, Q. Tan, J. & Xu, Y. 2010. An ERDAS image processing method for retrieving LST and describing urban heat evolution: a case study in the Pearl River Delta Region in South China. Environmental Earth Sciences 59, 1047-1055.
Toth, C. and G. Jóźków. 2016. "Remote sensing platforms and sensors: A survey." ISPRS Journal of Photogrammetry and Remote Sensing 115, 22-36.
Toutakhane, A. M. & Mofareh, M. 2016. Investigation And Evaluation Of Spatial Patterns In Tabriz Parks Using Landscape Metrics. Journal of Urban and Environmental Engineering, 10(2), 263-269.
Toutakhane, A. M. 2018. Influencing Factors On Performance Of Social Behavior Settings At Parks And Green Spaces Of Tabriz. Journal of Urban and Regional Analysis, 10(2), 199-215.
Van de Griend, A.A. & Owe, M. 2003. On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces. Int. J. Remote Sens 14, 1119-1131.
Wang, S. Ma, Q. Ding, H. & Liang, H. 2018. Detection of urban expansion and land surface temperature change using multi-temporal landsat images. Resources, Conservation and Recycling 128, 526-534.
Weng, Q. 2001. A remote sensing-GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China. Int J Remote Sens 22, 1999–2014.
Xu, D. and R. Chen. 2017. "Comparison of urban heat island and urban reflection in Nanjing City of China." Sustainable Cities and Society 31, 26-36.
Zhang, J. Wang, Y. & Wang, Z. 2008. Change analysis of land surface temperature based on robust statistics in the estuarine area of Pearl River (China) from 1990 to 2000 by Landsat TM/ETM+ data. Journal of Remote Sensing 28(10), 2383-2390. 
Zhang, Y. Yiyun, C. Qing, D. & Jiang, P. 2012. Study on Urban Heat Island Effect Based on Normalized Difference Vegetated Index: A Case Study of Wuhan City, the 18th Biennial Conference of International Society for Ecological Modeling, Procedia Environmental Sciences 13, 574-581.