‌‌‌‌‌‌‌مدل‌سازی پراکنش بالقوۀ گونه‌های حیات‌وحش بر مبنای دانش بوم‌شناختی جوامع بومی در مقایسه با روش‌های یادگیری ماشینی (مطالعۀ موردی: آهوی ایرانی در منطقۀ حفاظت‌شدۀ میشداغ)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموختۀ کارشناسی ارشد سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکدۀ علوم زمین، دانشگاه شهید چمران اهواز

2 دانشیار گروه سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکدۀ علوم زمین، دانشگاه شهید چمران اهواز

3 استادیار گروه محیط‌زیست، دانشکدۀ منابع‌طبیعی و علوم زمین، دانشگاه کاشان

4 استادیار گروه شیلات و محیط‌زیست، دانشکدۀ منابع‌طبیعی و علوم زمین، دانشگاه شهرکرد

چکیده

پایش و مدیریت جمعیت‌های حیات‌وحش و زیستگاه‌ها نیازمند مدل‌سازی زیستگاه‌های مطلوب و پراکنش گونه‌ای است. بنابراین در این پژوهش، مدل‌سازی پراکنش بالقوۀ آهوی ایرانی با دو رویکرد فازی (مبتنی بر دانش بوم‌شناختی جوامع بومی) و مکسنت (مبتنی بر داده‌های حضور گونه) در منطقۀ حفاظت‌شدۀ میشداغ اجرا شد؛ تا ضمن مدل‌سازی پراکنش گونه‌ای با استفاده از سامانۀ استنتاج فازی (رویکرد فازی) و الگوریتم آنتروپی بیشینه (رویکرد مکسنت)، به بررسی و مقایسۀ کارایی هر یک از این دو رویکرد پرداخته شود. به‌علاوه، ارزیابی هر یک از مدل‌ها با استفاده از تحلیل جک‌نایف انجام شد. آستانه‌گذاری نیز با استفاده از آستانۀ حضور 10% صورت گرفت. براساس یافته‌ها، سه متغیر کاربری سرزمین، فاصله از کشت‌زارها و فاصله از منابع آب در هر دو رویکرد فازی و مکسنت به‌عنوان مهم‌ترین متغیرهای مدل‌سازی شناخته شدند. همچنین، در هر یک از رویکردهای فازی و مکسنت به ترتیب 45/47% و 08/14% منطقه به‌عنوان منطقۀ حضور بالقوه پیش‌بینی شد. براساس تحلیل جک‌نایف، میزان موفقیت هر یک از مدل‌های فازی و مکسنت به ترتیب، 95/80% و 66/66% برآورد شد (p<0.01). یافته‌های پژوهش مؤید کارایی بالای سامانۀ استنتاج فازی و الگوریتم آنتروپی بیشینه در مدل‌سازی پراکنش بالقوۀ آهوی ایرانی است. این مطالعه را می‌توان از یک سو تأکیدی بر ضرورت توجه به رویکردهایی همچون رویکرد فازی در مدل‌سازی پراکنش بالقوۀ گونه‌های حیات‌وحش کشور و از سوی دیگر تأکیدی بر ضرورت توجه به دانش بوم‌شناختی جوامع بومی هر منطقه دانست.   

کلیدواژه‌ها

عنوان مقاله [English]

Potential distribution modelling of wildlife species based on ecological knowledge of local communities compared with machine learning methods: A case study of Gazella subgutturosa in Mishdagh Protected Area

نویسندگان [English]

  • j j 1
  • Kazem Rangzan 2
  • Rouhollah Mirzaei 3
  • Mohammadreza Ashrafzadeh 4

1 j

2 Department of RS &amp; GIS, Faculty of Earth Sciences, Shahid Chamran University of Ahvaz, Iran

3 Department of Environment, Faculty of Natural Resources and Earth Sciences, University of Kashan, Iran.

4 Department of Fisheries and Environmental Scinces, Faculty of Natural Resources and Earth Scinces, Shahrekord University, Iran

چکیده [English]

Monitoring and managing the wildlife populations and habitats required to model the species distribution and habitat suitability. So, Gazella subgutturosa potential distribution in Mishdagh Protected Area was modeled using fuzzy (based on ecological knowledge of local communities) and MaxEnt (based on species occurrence records) approaches; thus, in addition to model the species distribution using maximum entropy algorithm (MaxEnt approach) and fuzzy inference system (fuzzy approach), we can also assess and compare the performance of each approach. In addition, the accuracy of predictive models was tested using jackknife test. Also, we applied threshold of 10%. Based on results of fuzzy and MaxEnt approaches, the most important variables for species potential distribution modelling were land use, distance to farms and distance to water sources. Also, 47.45% and 14.08% of study area predicted as species potential presence area in fuzzy and MaxEnt approaches, respectively. According to results of jackknife test, success rates of fuzzy and MaxEnt approaches were 80.95% and 66.66%, respectively (p<0.01). Findings of this research confirmed the high performance of fuzzy inference system and maximum entropy algorithm to model species potential distribution. This study emphasized the necessity of attention to fuzzy approach for potential distribution modelling of wildlife species in Iran, and emphasized also the necessity of attention to the ecological knowledge of local communities.

کلیدواژه‌ها [English]

  • ecological knowledge
  • Local communities
  • potential distribution
  • Fuzzy inference system
  • maximum entropy algorithm
Akbari-Harouni, H., Behrouzi-Rad, B., Hasanzade-Kiabi, B. 2008. Investigation on Habitat Suitability of Gazella Subgutturosa in Kalmand-Bahadoran Protected Area in Yazd Province. Environmental studies, 46: 113-118. (in Persian)
Anderson, R.P., Gonzalez-Jr, I. 2011. Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent. Ecological Modelling, 222: 2796– 2811.
Azkia, M., Darban-Astane, A.R. 2003. Applied methods of research. Keyhan Press, Tehran, 225 p.
Bland, J.M, Atman, D.G. 1997. Statistic Note: Cronbach Alpha. Clinical research ed. British Medical Journal, 7080: 314-572.
Carvalho, J.C., Gomes, P. 2003. Habitat suitability model for European wild rabbit (Oryctolagus cuniculus) with implications for restocking. Game and Wildlife Science, 20: 287-301.
Costa, H., Ponte, N.B., Azevedo, E.B., Gil, A. 2015. Fuzzy set theory for predicting the potential distribution and cost-effective monitoring of invasive species. Ecological Modelling, 316: 122–132.
Durmus, M. 2010. Determination of home range size and habitat selection of gazelles (Gazella subgutturosa) by GPS telemetry in Sanliurfa, Master’s thesis, Department of Biological Sciences, Middle East Technical University. 139 p.
Escalante, T., Rodriguez-Tapia, G., Linaje, M., Illoldi-Rangel, P., Gonzalez-Lopez, R. 2013. Identification of areas of endemism from species distribution models: Threshold selection and NEARCTIC mammals. TIP Revista Especializada en Ciencias Quimico-Biologicas, 16 (1): 5-17.
Farhadinia, M.S., Shams Esfandabad, B., Karami, M., Hosseini-Zavarei, F., Absalan, H., Nezami, B. 2009. Goitered gazelle (Gazella subgutturosa): its habitat preference and conservation needs in Miandasht Wildlife Refuge, northeastern Iran. Zoology in the Middle East, 46: 9-18.
Flather, C.H., Sauer, J.R. 1996. Using landscape ecology to test hypotheses about large-scale abundance patterns in migratory birds, Ecology, 77: 28–35.
Gaston K.J. 1996. Species richness: measure and measurement. Biodiversity: a biology of numbers and difference, Blackwell Science, Oxford, pp. 77–113.
Hemami, M.R., Groves, C.P. 2001. Iran. pp. 114-118, In: Mallon, D.P., Kingswood, S.C., (Eds.), Antelopes, Part 4: North Africa, the Middle East and Asia, Global Survey and Regional Action Plans, IUCN/SSC Antelope Specialist Group, IUCN, Gland and Cambridge.
Holguin-Gonzalez, J.E. 2013. Integrated ecological modeling for decision support in river management. PhD thesis, Ghent University, Ghent, Belgium.
Lu, C.Y., Gu, W., Dai, A.H., Wei, H.Y. 2012. Assessing habitat suitability based on geographic information system (GIS) and fuzzy: A case study of Schisandra sphenanthera Rehd. et Wils. In Qinling Mountains, China. Ecological Modelling, 242: 105– 115.
Madhoushi, M., Jabbari, N. 2014. Theory Development from Qualitative Data Mining in Knowledge Sharing and Designing its Native Scale: A case study. New Approaches in Educational Administration, 4 (16): 83-104.
Makhdoum, M.F. 2008. Landscape ecology or environmental studies (Land Ecology) (European Versus Anglo- Saxon schools of thought). Environmental Application & Science, 3 (3): 147-160.
Mallon, D.P. 2008. Gazella subgutturosa. In: IUCN Red List of Threatened Species. Version 2009.2. Available from http://www.iucnredlist.org. Accessed 11th November 2009.
Mirzaei, R., Hemami, M.R., Esmaili Sari, A., Rezaei, H.R. 2013. Determination of common buzzard (Buteo buteo) distribution and influencing factors in Golestan province using Maximum Entropy algorithms. Proceedings of 1th international conference of IALE-Iran, Isfahan, Iran. 10 p. (in Persian)
Mocq, J., St-Hilairea, A., Cunjak, R.A. 2013. Assessment of Atlantic salmon (Salmo salar) habitat quality and itsuncertainty using a multiple-expert fuzzy model applied to the Romaine River (Canada). Ecological Modelling, 265: 14– 25.
Nowzari, H., Behrouzi Rad, B., Hemami, M.R. 2007. Habitat use by Persian gazelle (Gazella subgutturosa subgutturosa) in Bamoo National park during autumn and winter, Acta Zoologica Mexicana, 23: 109–121.
Obeidavi, Z. 2015. Designing a Web GIS system for wildlife of Khuzestan province. Master’s thesis, Department of Remote Sensing and Geographic Information System, Shahid Chamran University of Ahvaz. 102 p. (in Persian)
Obeidavi, Z., Rangzan, K., Mirzaei, R., Kabolizade, M. 2017a. Habitat Suitability Modelling of Brown Bear (Ursus arctos) in Shimbar Protected Area, Khuzestan Province. Iranian Journal of Applied Ecology, 5 (18): 61-72.
Obeidavi, Z., Rangzan, K., Mirzaei, R., Kabolizade, M., Amini, A. 2017b. Wildlife Habitats Suitability Modelling using Fuzzy Inference System: A Case Study of Persian Leopard (Panthera pardus saxicolor) in Shimbar Protected Area . Iranian Journal of Applied Ecology, 6 (1): 57-67. (in Persian)
Pearson, R.G., Raxworthy, C.J., Nakamura, M., Peterson, A.T. 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Biogeography, 34: 102–117.
Phillips, S.J., Anderson, R.P., Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modeling, 190: 231-259.
Potschin, M. 2002. Landscape ecology in different parts of the world. In: Bastian O and Steinhardt U (Eds.), Development and perspectives of landscape ecology. Kluwer Academic Publishers. Boston.
Ramezanizadeh, S., Mansoori, J., DehdarDargahi, M., Shams Esfandabad, B. 2013. Iranian gazelle (Gazella subgutturosa subgutturosa) habitat evaluation in Salook National Park using ecological niche factor analysis (ENFA). Proceedings of 1th National Conference on strategies for sustainable development in agriculture, natural resources and environment, Tehran, Iran. 8 p. (in Persian)
Santos, R.O., Lirman, D. 2012. Using habitat suitability models to predict changes in seagrass distribution caused by water management practices. Canadian Journal of Fisheries and Aquatic Sciences, 69(8): 1380-1388.
Shams Esfandabad, B. 2002. Ecological and biological studies of gazelle in Sohrin plain. Master’s thesis, Tehran University. 113 p. (in Persian)
Zachos, F.E., Karami, M., Günther B.H., Eckert, I., Kirschning J. 2010. First genetic analysis of a free-living population of the threatened goitered gazelle (Gazella subgutturosa). Mammalian Biology - Zeitschrift fur Saugetierkunde, 75 (3): 277-282.
Zielinski, W.J., Dunk, J.R., Yaeger, J., Scott, L., David, W. 2010. Developing and testing a landscape-scale habitat suitability model for fisher (Martes pennanti) in forests of interior northern California. Forest Ecology and Management, 260 (2010): 1579–1591.