پیش‌بینی و ارزیابی مرگ‌و‌میر‌ گونه‌های درختی و تعیین فاکتورهای فیزیوگرافیک تأثیر‌گذار بر آن در جنگل‌های استان مازندران به کمک شبکه‌های عصبی مصنوعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 نویسنده مسئول، استادیار پژوهش، مؤسسه تحقیقات جنگلها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

2 استاد، گروه مهندسی ماشین‌های کشاورزی، دانشگاه تهران

3 استادیار پژوهش، مرکز تحقیقات استان کرمان، سازمان تحقیقات، آموزش و ترویج کشاورزی، ایران.

چکیده

ارزیابی و تعیین میزان ­مرگ­و­میر درختان در طول دوره، اساس برنامه­ریزی­های بلند­مدت مدیریت منابع طبیعی است که کاری چالش­برانگیز و دشوار است؛ زیرا عوامل و فرآیندهای مختلفی بر روی آن تأثیرگذار و تعیین­کننده هستند. در این پژوهش با استفاده از تکنیک شبکة عصبی مصنوعی، احتمال مرگ و میر درختان در سطح قطعات نمونة ثابت مدل­سازی و تخمین زده شد. از متغیرهای زیستی و غیرزیستی نظیر میران انرژی تابشی نور خورشید در فصل رویش، شاخص خیسی توپوگرافی، ارتفاع بالای نزدیک­ترین نقطة زه­کشی شده، سرعت باد، متوسط قطر برابر سینه (در سال 1391) و سطح مقطع برابر سینه به عنوان متغیرهای ورودی و احتمال مرگ­و­میر درختان در سطح قطعات نمونة ثابت در جنگل­های هیرکانی به عنوان متغیر خروجی در کلیة مدل­سازی­های آلومتریک و شبیه­سازی شبکة عصبی استفاده شد. معماری­های مختلف (توپولوژی) شبکه با الگوریتم پس­انتشار خطا با تعداد نورون­های متفاوت شامل توابع انتقالی لجستیک سیگموئدی و تانژانت هیپربولیک در لایه­های پنهان آموزش داده شدند، این مدل­ها دقت­های متفاوتی از برآورد متغیر پاسخ ارائه ­دادند. نتایج این تحقیق نشان داد که درختان با قطر 20 تا 100 سانتی­متر بهترین و بیشترین زنده­مانی را دارند. با افزایش رقابت (سطح مقطع قطورترین درخت) زنده­مانی کاهش پیدا می­کند. گونة ممرز نسبت به سایر گونه­ها به مقدار کمی از مرگ و میر بیشتری برخوردار است. همچنین از نتایج این تحقیق چنین استنباط می­شود که از متغیرهای زیستی، سطح مقطع قطورترین درختان و از میان متغیرهای غیرزیستی ترکیب عوامل توپوگرافی با شاخص خیسی خاک و سرعت باد بیشترین تأثیر را بر احتمال مرگ و میر در سطح قطعة ­نمونه دارند.

کلیدواژه‌ها

عنوان مقاله [English]

Predicting and assessing the tree species survival and determining Physiographic factors affecting on it in Mazandaran province Forests using artificial neural networks

نویسنده [English]

  • Mahmoud Bayat 1

چکیده [English]

Being able to quantify the probability of tree species survival is fundamental to the management of forests worldwide that is very hard. Because there are many processes and factors affecting on it. This paper examines the possible ecological controls probability of tree species survival and quantifying abiotic and biotic variables affecting on it by artificial neural networks in Hyrcanian Forests including growing-season-cumulated potential solar radiation, seasonal air temperature, topographic wetness index in representing soil water distribution, and wind velocity generated from simulation of fluid-flow dynamics in complex terrain. Biotic variables related to tree diameter increment involve averaged 2003 tree diameter and basal area measured in individual forest plots. Allometric equations of logarithmic multiple linear regressions transformed models of power functions which have different parameters were introduced to clarify the certainty of simulating process The predictors used in survival modelling described the influence of tree size, competition and species. The model shows that trees with dbh between 20 and 100 cm survive best. Increasing competition (BAL) decreases survival, and Carpinus betulus has a slightly lower survival rate than the other species. Also, the results of this investigation, it is understood that BAL, topographic wetness index in representing soil water distribution, and wind velocity had the strongest correlation with probability of tree species survival in the fixed sample plots.

کلیدواژه‌ها [English]

  • Artificial Neural Networks
  • Physiographic factors
  • Hyrcanian forests
  • Survival
Atri, M., 1997. Phytosociology (Sociology plant). Research Institute of Forests and Rangelands press. 384p (In Persian).
Bang, C., Sabo, J.L. and Faeth, S.H., 2010. Reduced wind speed improves plant growth in a desert city. PLoS One 5(6), 1-12.
Basiri, R., 2003. Growth area ecological study of Quercus Libani using analysis environmental factors in the region of Marivan (northern Zagros).Phd thesis. Natural Resources (In Persian)
Bassow, S.L. and Bazzaz, F.A., 1998. How environmental conditions affect canopy leaf-level photosynthesis in four deciduous tree species. Ecology 79(8), 2660-2675.
Bayat, M. Namiranian, M. Omid, M. Rashidi, A. and Babaei, S. 2016. The efficiency of artificial neural network in estimation of forest stand. Journal – research forest and poplar 24 (2): 214-226. (In Persian).
Bourque, CP-A. and Matin, M.A., 2012. Seasonal snow cover in the Qilian Mountains of Northwest China: Its dependence on oasis seasonal evolution and lowland production of water vapour. Journal of Hydrology 454-455, 141-151.
Bourque, CP-A. Bayat, M. 2015. Landscape Variation in Tree Species Richness in Northern Iran Forests. PLoS ONE 10(4):1-18.
Campbell, G.S. and Norman, J.M., 1998. An introduction to environmental biophysics (2nd ed.). Springer-Verlag, New York, 306 pp.
Chavez, P.S., 1988. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment 24, 459-479.
Daubenmire, R. F., 1976. The use of vegetation in assessing the productivity of forest lands. Botanical Review 42,115-143.
Etemad, v., 2002. Quantity and quality investigation seed of fagus the forests of Mazandaran province, PHD thesis of forestry. Natural Resources Faculty, University of Tehran, 258p
Foody, G.M., Boyd, D.S. and Cutler, M.E.J., 2003. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sensing of Environment 85, 463– 474.
Hagan, M.T., Dcmuth, H.B. and Beale, M., 1996. Neural Network design, PWS publishing co, United States of America.
Lutz, J.A. and Halpern, C.B., 2006. Tree mortality during early forest development: along-term study of rates, causes, and consequences. Ecological Monographs 76, 257–275.
Murphy, PNC., Ogilvie, J., Meng, F-R., White, B. and Bhatti, JS., 2011. Modelling and mapping topographic variations in forest soils at high resolution: A case study. Ecological Modelling 222, 2314-2332.
Nagendra, H., 2001. Using remote sensing to assess biodiversity. International Journal of Remote Sensing 22(12),
2377-2400.
Nakashizuka, T., 2001. Species coexistence in temperate, mixed deciduous forests. Trends in Ecology and Evolution, 16: 205–210.
Pausas, J.G. and Austin, M.P., 2001. Patterns of plant species richness in relation to different environments: an appraisal. Journal of Vegetation Science 12, 153-166.
Tahmasebi, P., 2015. Ecology of plant communities. University of shahrekord Press. 247p.
Volkov, I., Banavar, JR., He, FL., Hubbell, SP. and Maritan, A., 2005. Density dependence explains tree species abundance and diversity in tropical forests. Nature 438, 658–661.
Toth, T., Schaap, M.G. and Molnar, Z., 2008. Utilization of soil–plant interrelations through the use of multiple regression and artificial neural network in order to predict soil properties in hungrian solonetzic grasslands. Cereal Research Communications 36, 1447–1450.
Wang, X., Comita, L.S., Hao, Z., Davies, S.J. and Ye, J., 2012. Local-Scale Drivers of Tree Survival in a Temperate Forest. PLoS ONE 7(2), e29469.
Zhang, J., Hao, Z., Sun, IF., Song, B. and Ye, J., 2009. Density dependence on tree survival in an old-growth temperate forest in northeastern China. Annuals of Forest Sciences 66, 204.