ارزیابی توانایی رشد و تجزیه زیستی نفت سفید توسط چندین باکتری جداسازی شده از خاک و آب آلوده به ترکیبات نفتی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس ارشد بیوتکنولوژی، پژوهشگاه زیست‌فناوری، دانشگاه شیراز، شیراز، ایران

2 دانشیار بخش زراعت و اصلاح‌نباتات، دانشکدۀ کشاورزی، دانشگاه شیراز، شیراز، ایران

3 بخش گیاه‌پزشکی، دانشکدۀ کشاورزی، دانشگاه شیراز، شیراز، ایران

چکیده

پژوهش حاضر جهت جداسازی و شناسایی باکتری‌های مناسب زیست‌پالایی ترکیبات نفتی موجود در خاک‌ و آب آلوده در منطقۀ بندرعباس انجام شد. سه نمونه خاک و دو نمونه آب آلوده از پالایشگاه بندرعباس جمع‌آوری و جدایه‌هایی از آن­ها در دمای 37 درجۀ سانتی‌گراد جداسازی شد. با جایگزینی عناصر کربن و گوگرد در محیط کشت باکتریایی SSM با نفت سفید (20%) قابلیت رشد جدایه‌ها در غلظت بالای نفت سفید بررسی شد. شناسایی جدایه‌ها از طریق تست‌های بیوشیمیایی، کیت شناسایی باکتری API20E و همچنین توالی‌یابی ژن 16S rDNA انجام شد و با استفاده از کروماتوگرافی گازی میزان تجزیۀ زیستی جدایه‌ها بررسی شد. از نمونه‌های جمع‌آوری شده 9 جدایه جداسازی و در آزمون جایگزینی عناصر مختلف در محیط کشت باکتریایی SSM با نفت سفید (20%) مشخص شد که 4 جدایه‌ توانایی استفاده از ترکیبات گوگردار نفت را دارند. آزمون‌های شناسایی جدایه‌ها نشان داد که جدایه‌ها Enterobacter cloacae، Enterobacter hormaechei و دو جدایه
Enterobacter sakazakii بودند. کروماتوگرافی گازی تأیید کرد که باکتری‌های Enterobacter cloacae، Enterobacter hormaechei و Enterobacter sakazakii به ترتیب 24/32، 98/11 و 92/44 درصد از نفت سفید را به عنوان منبع گوگرد در دمای 37 درجۀ سانتی‌گراد تجزیه کرده‌اند. با توجه به نتایج به­دست آمده مشخص شد این باکتری‌ها از قابلیت تجزیۀ زیستی خوبی برخوردار هستند و می‌توان آن‌ها را به عنوان باکتری‌هایی با قابلیت تجزیۀ زیستی ترکیبات نفتی معرفی کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of the growth ability and biodegradation of kerosene by several bacteria isolated from oil-contaminated soil and water

نویسندگان [English]

  • Mohammad Mojarrad 1
  • Abbas Alemzadeh 2
  • Golafarin Ghoreishi 1
  • Mohammad Djavaheri 3
Boopathy, R., 2000. Factors limiting bioremediation technologies. Bioresource Technology 74, 63-67.

Crawford, R.L., 2006. Bioremediation. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., Stackebrandt, E. (Eds.), The Prokaryotes, Symbiotic associations, Biotechnology, Applied Microbiology. 3rd ed. Springer Science + Business Media Inc., New York, USA, Vol. 1 pp. 850-863.

Das, K., Mukherjee, A.K., 2007. Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresource Technology 98, 1339-45.

Das, N., Chandran, P., 2011. Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnology Research International 2011, 1-13.

Di Martino, C., López, N.I., Raiger Iustman L.J., 2012 Isolation and characterization of benzene, toluene and xylene degrading Pseudomonas sp. selected as candidates for bioremediation. International Biodeterioration & Biodegradation 67, 15-20.

Dudley B., 2015. BP Statistical Review of World Energy June 2015. BP’s printed publications. Report number: 2015, 45 p.

Evans, F.F., Rosado, A.S., Sebastian, G.V., Casella, R., Machado, P.L., Holmstrom, C., Kjelleberg, S., Elsas, J.D., Seldin, L., 2004. Impact of oil contamination and biostimulation on the diversity of indigenous bacterial communities in soil microcosms. FEMS Microbiology Ecology 49, 295-305.

Faoro, H., Alves, A.C., Souza, E.M., Rigo, L.U., Cruz, L.M., Al-Janabi, S.M., Monteiro, R.A., Baura, V.A., Pedrosa, F.O., 2010. Influence of Soil Characteristics on the diversity of bacteria in the southern Brazilian Atlantic forest. Applied and Environmental Microbiology 76, 4744-4749.

Ghoreishi, G., Alemzadeh, A., Djavaheri, M., 2013. Bioremediation ability of bacteria isolated from petroleum contaminated soils using gas chromatography. Computer vision. In: Proceedings of the 1st National Bioremediation Symposium, Tehran, Iran.

Gouda, M.K., Omar, S.H., Chekroud, Z.A., Nour Eldin, H.M., 2007. Bioremediation of kerosene I: A case study in liquid media. Chemosphere 69, 1807-1814.

Gouda, M.K., Omar, S., Nour Eldin, H., Chekroud, Z., 2008. Bioremediation of kerosene II: a case study in contaminated clay (Laboratory and field: scale microcosms). World Journal of Microbiology and Biotechnology 24, 1451-1460.

Hafidh, H., 2016. OPEC Annual Statistical Bulletin 2016. Organization of the Petroleum Exporting Countries: 2016, 125 p.

Hassanshahian, M., Emtiazi, G., Cappello, S., 2012. Isolation and characterization of crude-oil-degrading bacteria from the Persian Gulf and the Caspian Sea. Marine Pollution Bulletin 64, 7-12.

Head, I.M., Jones, D.M., Roling, W.F.M., 2006. Marine microorganisms make a meal of oil. Nature Reviews Microbiology 4, 173-182.

Lin, T.C., Shen, F.T., Chang, J.S., Young, C.C., Arun, A.B., Lin, S.Y., Lai, T., 2009. Hydrocarbon degrading potential of bacteria isolated from oil-contaminated soil. Journal of the Taiwan Institute of Chemical Engineers 40, 580-582.

Liu, Y.C., Li, L.Z., Wu, Y., Tian, W., Zhang, L.P., Xu, L., Shen, Q.R., Shen, B., 2010. Isolation of an alkane-degrading Alcanivorax sp. strain 2B5 and cloning of the alkB gene. Bioresource Technology 101, 310-316.

Madueño, L., Coppotelli, B.M., Alvarez, H.M., Morelli, I.S., 2011. Isolation and characterization of indigenous soil bacteria for bioaugmentation of PAH contaminated soil of semiarid Patagonia, Argentina. International Biodeterioration & Biodegradation 65, 345-351.

Meyer, J.M., Abdallah, M.A., 1987. The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties. Journal of General Microbiology 107, 319-328.

Mirdamadian, S.M., Emtiazi, G., Golabi, M.H., Ghanavati, H., 2010. Biodegradation of Petroleum and Aromatic Hydrocarbons by Bacteria Isolated from Petroleum-Contaminated Soil. Journal of Petroleum & Environmental Biotechnology 1, 1-5.

Mishra, S., Jyot, J., Kuhad, R.C., Lal, B., 2001. Evaluation of Inoculum Addition to Stimulate In Situ Bioremediation of Oily-Sludge-Contaminated Soil. Applied and Environmental Microbiology 67, 1675-1681.

Mojarrad, M., Alemzadeh, A., Djavaheri, M., 2013. The effect of temperature on kerosene biodegradation ability by Enterobacter cloacae. Computer vision. In: Proceedings of the 1st National Bioremediation Symposium, Tehran, Iran.

Mojarrad, M., Alemzadeh, A., Ghoreishi, G., Djavaheri, M., 2016. Kerosene biodegradation ability and characterization of bacteria isolated from oil-polluted soil and water. Journal of Environmental Chemical Engineering 4, 4323–4329.

Pau-Roblot, C., Lequart-Pillon, M., Apanga, L., Pilard, S., Courtois, J., Pawlicki-Jullian, N., 2013. Structural features and bioremediation activity of an exopolysaccharide produced by a strain of Enterobacter ludwigii isolated in the Chernobyl exclusion zone. Carbohydrate Polymers 93, 154-162.

Pelaez, A.I., Lores, I., Sotres, A., Mendez-Garcia, C., Fernandez-Velarde, C., Santos, J.A., Gallego, J.L.R., Sanchez, J., 2013. Design and field-scale implementation of an “on site” bioremediation treatment in PAH-polluted soil. Environmental Pollution 181, 190-199.

Sarkar, D., Ferguson, M., Datta, R., Birnbaum, S., 2005. Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environmental Pollution 136, 187-195.

Tahhan, R.A., Ammari, T.G., Goussous, S.J., Al-Shdaifat, H.I., 2011. Enhancing the biodegradation of total petroleum hydrocarbons in oily sludge by a modified bioaugmentation strategy. International Biodeterioration & Biodegradation 65, 130-143.

Tyagi, M., da Fonseca, M.M., Carvalho, C.C.R., 2011. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22, 231-241.

Weisburg, W.G., Barns, S.M., Pelletier, D.A., Lane, D.J., 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology 173, 697-703.

Wongsa, P., Tanaka, M., Ueno, A., Hasanuzzaman, M., Yumoto, I., Okuyama, H., 2004. Isolation and characterization of novel strains of Pseudomonas aeruginosa and Serratia marcescens possessing high efficiency to degrade gasoline, kerosene, diesel oil, and lubricating oil. Current Microbiology 49, 415-422.

Zhang, Z., Gai, L., Hou, Z., Yang, C., Ma, C., Wang, Z., Sun, B., He, X., Tang, H., Xu, P., 2010. Characterization and biotechnological potential of petroleum-degrading bacteria isolated from oil-contaminated soils. Bioresource Technology 101, 8452–8456.