بررسی تغییرات دمای سطح زمین (LST) درمنطقه‌بندی آب‌و‌هوای محلی (LCZs) مناطق نیمه‌خشک (مطالعة شهر بجنورد)

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم و مهندسی محیط‌ زیست، دانشکدة شیلات و محیط‌ زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران.

10.22059/jne.2024.372929.2653

چکیده

شهرنشینی که به‌عنوان عامل اصلی مشکلات اقلیمی در شهرها در نظر گرفته می‌شود، نه‌تنها محیط فیزیکی شهرها را تغییر داده است، بلکه ویژگی‌های آب‌وهوای محلی و منحصر به‌فرد مناطق شهری را تحت تأثیر قرار داده است. هدف از این مطالعه بررسی رابطة بین ویژگی‌های سطحی مناطق آب‌وهوای محلی استخراج‌شده از تصاویر ماهواره‌ای و دمای سطح زمین در یک منطقة نیمه‌خشک است. با استفاده از یک رویکرد طبقه‌بندیLCZ ، این مطالعه به‌دنبال درک چگونگی تأثیر LCZ بر LST در این زمینة محیطی خاص است. این مطالعه شامل چهار مرحلة اصلی بود: پیش‌پردازش تصاویر، بازیابی LST، تهیة نقشة LCZ و تجزیه تحلیل فضایی. طرح LCZ برای منطقه‌بندی منطقة مورد مطالعه بر اساس دو مجموعه انواع انسان‌ساخت و انواع پوشش زمین استفاده شد. Google Earth برای مشخص کردن مناطق آموزشی و تعریف انواع مختلف LCZ مورد استفاده قرار گرفت. از داده‌های سنجندة مادون‌قرمز حرارتی لندست و الگوریتم پنجرة مجزا (SWA) برای بازیابی LST استفاده گردید. نتایج نشان داد مجموعه­ های انسان‌ساخت و پوشش طبیعی زمین به‌عنوان دو مجموعه الگوی مستقل در منطقة مورد مطالعه رفتار می‌کنند. LST مجموعه‌ انسان‌ساخت نسبت به انواع پوشش گیاهی زمین (جنگل، مزارع و بوته‌ها) در محدودة گرم‌تری نوسان داشت. این مطالعه با روشن کردن رابطة بین خواص سطحی طبقات LCZ و LST، بینش ­های ارزشمندی را در مورد عوامل مؤثر بر پویایی حرارتی در محیط‌های نیمه‌خشک ارائه می‌دهد. با استفاده از این دانش، برنامه‌ریزان شهری می ­توانند استراتژی­ ها و مداخلات آگاهانه­ تری را با هدف کاهش چالش های مربوط به گرما و بهبود زندگی شهری توسعه دهند.    

کلیدواژه‌ها

عنوان مقاله [English]

Land surface temperature (LST) variability in local climate zones (LCZs) in semi-arid regions (Case study: Bojnourd City)

نویسندگان [English]

  • Zzahra Parvar
  • Marjan Mohammadzadeh
  • Sepideh Saeidi

Department of Environmental Sciences, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Iran.

چکیده [English]

Urbanization which has been considered the main contributor to climatic problems in cities, not only changed the physical environment in cities, but also has affect the characteristics of local climate zone. This study aims to investigate the relationship between surface properties of Local Climate Zones (LCZ) extracted from satellite resolution images and Land Surface Temperatures (LST) in a semi-arid region. By employing the LCZ approach, the study seeks to understand how LCZs influence LSTs in this specific environmental context. This study consisted of four main steps: Image preprocessing, LST retrieval, LCZ map preparation and spatial analysis. In this way, the LCZ scheme was used to classify the study area based on two sets of built-up types and land-cover types. Google Earth was used to specify training areas under study and to define different LCZ types. The Split Window Algorithm (SWA) was used to retrieve LST from Landsat-8 TIRS. The results showed that the built type and the land-cover type behave like two independent sets of patterns in the study area. The build type set fluctuated in a higher LST range than the cover land set (forest, farmlands and bushes). By shedding light on the relationship between the surface properties of LCZs and LSTs, the study provides valuable insights into the factors influencing thermal dynamics in semi-arid environments. Armed with this knowledge, urban planners can develop more informed strategies and interventions aimed at mitigating heat-related challenges and improving overall urban livability. 

کلیدواژه‌ها [English]

  • Land Surface Temperature (LST)
  • Land cover
  • Local Climate Zones (LCZs)
  • Urban morphology
Abougendia, S.M., 2023. Investigating surface UHI using local climate zones (LCZs), the case study of Cairo’s River Islands. Alexandria Engineering Journal 77, 293-307.
Azmi, R., Tekouabou Koumetio, C.S., Diop, E.B., Chenal, J., 2021. Exploring the relationship between urban form and land surface temperature (LST) in a semi-arid region case study of Ben Guerir city - Morocco. Environmental Challenges 5, 100229,
Bala, R., Prasad, R., Pratap Yadav, V., 2020. A comparative analysis of day and night land surface temperature in two semi-arid cities using satellite images sampled in different seasons. Advances in Space Research 66(2), 412-425,
Bande, L., Manandhar, P., Marpu, P., Battah, M.A., 2020. Local Climate Zones Definition in Relation to ENVI-met in the City of Dubai, UAE. IOP Conference Series: Materials Science and Engineering 829(1), 012013.
Bechtel, B., Alexander, P.J., Böhner, J., Ching, J., Conrad, O., Feddema, J., Mills, G., See, L., Stewart, I., 2015. Mapping Local Climate Zones for a Worldwide Database of the Form and Function of Cities. ISPRS International Journal of Geo-Information 4(1), 199-219.
Bechtel, B., Demuzere, M., Mills, G., Zhan, W., Sismanidis, P., Small, C., Voogt, J., 2019. SUHI analysis using Local Climate Zones—A comparison of 50 cities. Urban Climate 28, 100451.
Bechtel, B., Pesaresi, M., See, L., Mills, G., Ching, J., Alexander, P., Feddema, J., Florczyk, A., Stewart, I., 2016. Towards consistent mapping of urban structure-global human settlement layer and local climate zones. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 41, 1371-1378.
Bechtel, B., See, L., Mills, G., Foley, M., 2016. Classification of Local Climate Zones Using SAR and Multispectral Data in an Arid Environment. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9(7), 3097-3105.
Chen, J., Zhan, W., Jin, S., Han, W., Du, P., Xia, J., Lai, J., Li, J., Liu, Z., Li, L., Huang, F., Ding, H., 2021. Separate and combined impacts of building and tree on urban thermal environment from two- and three-dimensional perspectives. Building and Environment 194, 107650.
Chini, M., Pelich, R., Hostache, R., Matgen, P., Lopez-Martinez, C., 2018. Towards a 20 m global building map from Sentinel-1 SAR data. Remote Sensing 10(11), 1833.
Danniswari, D., Honjo, T., Furuya, K., 2022. Analysis of Building Height Impact on Land Surface Temperature by Digital Building Height Model Obtained from AW3D30 and SRTM. Geographies 2(4), 563-576.
Das, M. and Das, A., 2020. Assessing the relationship between local climatic zones (LCZs) and land surface temperature (LST)–A case study of Sriniketan-Santiniketan Planning Area (SSPA), West Bengal, India. Urban Climate 32, 100591.
Estacio, I., Babaan, J., Pecson, N.J., Blanco, A.C., Escoto, J.E., Alcantara, C.K., 2019. GIS-based mapping of local climate zones using fuzzy logic and cellular automata. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 42,199-206.
Fonte, C.C., Lopes, P., See, L., Bechtel, B., 2019. Using OpenStreetMap (OSM) to enhance the classification of local climate zones in the framework of WUDAPT. Urban Climate 28, 100456.
Gholami Rostam, M., Beck, C., 2019. Towards the determination of driving factors of varying LST-LCZ relationships–a case study over 25 cities. Geographica Pannonica 23(4).
Haashemi, S., Weng, Q., Darvishi, A., Alavipanah, S.K., 2016. Seasonal variations of the surface urban heat island in a semi-arid city. Remote Sensing 8(4), 352.
Honjo, T., Tsunematsu, N., Yokoyama, H., Yamasaki, Y., Umeki, K. 2017. Analysis of urban surface temperature change using structure-from-motion thermal mosaicing. Urban Climate 20, 135-147.
Hu, J., Ghamisi, P., Zhu, X.X., 2018. Feature extraction and selection of sentinel-1 dual-pol data for global-scale local climate zone classification. ISPRS International Journal of Geo-Information 7(9), 379.
Nichol, J.E., 1996. High-resolution surface temperature patterns related to urban morphology in a tropical city: A satellite-based study. Journal of Applied Meteorology and Climatology 35(1), 135-146.
Ochola, E.M., Fakharizadehshirazi, E., Adimo, A.O., Mukundi, J.B., Wesonga, J.M., Sodoudi, S., 2020. Inter-local climate zone differentiation of land surface temperatures for Management of Urban Heat in Nairobi City, Kenya. Urban Climate 31, 100540.
Parvar, Z., Mohammadzadeh, M., Saeidi, S., 2023. Quantitative assessment of spatio-temporal dynamics of land use/land cover and land surface temperature using different algorithms and landsat imagery. Journal of Natural Environment 76(2), 229-243. (In Persian)
Parvar, Z., Salmanmahiny, A., 2024. PyLST: a remote sensing application for retrieving land surface temperature (LST) from Landsat data. Environmental Earth Sciences 83(12), 373.
Parvar, Z., Shayesteh, K. 2017. Monitoring and Prediction of Urban Growth Using Multitemporal Images and GIS Techniques (A Case Study of Bojnourd City). Journal of Environmental Studies 43(3), 513-527. (In Persian)
Sekertekin, A., Bonafoni, S., 2020. Land surface temperature retrieval from Landsat 5, 7, and 8 over rural areas: Assessment of different retrieval algorithms and emissivity models and toolbox implementation. Remote Sensing 12(2), 294.
Stewart, I.D., Oke, T.R. 2012. Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society 93(12), 1879-1900.
Wang, M., Xu, H. 2021. The impact of building height on urban thermal environment in summer: A case study of Chinese megacities. Plos One 16(4), e0247786.
Wang, R., Ren, C., Xu, Y., Lau, K.K.L., Shi, Y., 2018. Mapping the local climate zones of urban areas by GIS-based and WUDAPT methods: A case study of Hong Kong. Urban Climate, 24, 567-576.
Wang, X., Yu, X., Ling, F., 2014, July. Building heights estimation using ZY3 data, A case study of Shanghai, China. In 2014 IEEE Geoscience and Remote Sensing Symposium pp. 1749-1752.
Yang, X. and Li, Y., 2015. The impact of building density and building height heterogeneity on average urban albedo and street surface temperature. Building and Environment 90, 146-156.
Zheng, Z., Zhou, W., Yan, J., Qian, Y., Wang, J., Li, W., 2019. The higher, the cooler? Effects of building height on land surface temperatures in residential areas of Beijing. Physics and Chemistry of the Earth, Parts A/B/C 110, 149-156.
Zhou, L., Shao, Z., Wang, S., Huang, X., 2022. Deep learning-based local climate zone classification using Sentinel-1 SAR and Sentinel-2 multispectral imagery. Geo-Spatial Information Science 25(3), 383-398.