اثرات میکروپلاستیک پلی‌استایرن بر تکامل جنین ماهی زبرا (Danio rerioHamilton, 1822)

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه شیلات، دانشکدة منابع طبیعی، دانشگاه تهران،کرج، ایران.

10.22059/jne.2024.370483.2635

چکیده

آلودگی میکروپلاستیک ­ها در سراسر جهان روز‌به‌روز در حال افزایش است و این پتانسیل را دارد که اثرات منفی بر اکوسیستم‌های آبی و آبزیان بگذارند. با وجود گزارش ­های علمی زیاد در خصوص وجود میکروپلاستیک ­ها در اکوسیستم­ های آبی اطلاعات کمی در مورد سمیت آن‌ها در مراحل اولیة زندگی آبزیان وجود دارد. این مطالعه با هدف ارزیابی اثرات میکروپلاستیک پلی ­استایرن بر تکامل جنین در ماهی زبرا (Danio rerio) انجام گردید. در این مطالعه مولدین ماهی زبرا در دو دورة 21 و 60 روز در معرض غلظت­ های مختلف (صفر (شاهد)، 20، 200، 2000 میکروگرم بر لیتر) میکروپلاستیک پلی­استایرن قرار گرفتند. بعد از پایان هر دوره و تخمریزی ماهیان، تغییرات زمانی و روند رشد جنین بررسی شد. نتایج نشان داد که این میکروپلاستیک بعد از 21 روز در تیمارهای 20 و 200 میکروگرم بر لیتر نسبت به تیمار شاهد اثر معنی­داری بر مدت زمان تخم­گشایی و تکامل جنین نداشت، اما در تیمار 2000 میکروگرم بر لیتر اختلاف معنی ­داری (0/05>P) با تیمار شاهد مشاهده شد و مدت زمان تخم­گشایی 8 ساعت به تعویق افتاد. بعد از 60 روز در تیمارهای 200 و 2000 میکروگرم بر لیتر اختلاف معنی­داری با تیمار شاهد مشاهده شد و مدت زمان تخم­گشایی به‌ترتیب 10 و 6 ساعت به تعویق افتاده و مراحل رشد جنین دیرتر طی شد. به‌طور کلی می­توان نتیجه گرفت که تیمارهایی که مدت زمان بیشتر و با غلظت بالاتری در معرض میکروپلاستیک پلی ­استایرن قرار گرفتند مراحل رشد جنین را آهسته ­تر طی کرده و نسبت به تیمار شاهد دیرتر تفریخ می­ شوند. بنابراین، بررسی‌های بیشتر و نظارت بر آلودگی میکروپلاستیک­ها در اکوسیستم‌های آبی برای جلوگیری از عواقب بلند مدت آن‌ها بر جمعیت آبزیان مورد نیاز خواهد بود.

کلیدواژه‌ها

عنوان مقاله [English]

The effects of polystyrene microplastics on embryo development in Zebra danio (Danio rerio Hamilton, 1822)

نویسندگان [English]

  • Jamal Rahimi
  • Kamran Rezaei Tavabe
  • Bagher Mojazi Amiri
  • Arash Javanshir Khoei

Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran.

چکیده [English]

The pollution of microplastics is increasing worldwide, and they have the potential to have negative effects on aquatic ecosystems and aquatic organisms. Although there are many scientific reports on the presence of microplastics in aquatic ecosystems, little is known about their toxicity during the early stages of aquatic life. This study was conducted to evaluate the effects of polystyrene microplastics on embryo development in Zebra danio (Danio rerio). In this study, zebrafish broodstock was exposed to different concentrations (0 (control), 20, 200, 2000 μg/l) of polystyrene microplastics in two periods of 21 and 60 days. After each period and fish spawning, time changes, and the development process of embryos were investigated. According to the findings, after 21 days in the treatments of 20 and 200 μg/l, this particular type of microplastic did not have any significant impact on the duration of egg hatching and embryo development. However, in the treatment of 2000 μg/l, there was a significant difference (P<0.05) compared to the control treatment. Specifically, it was observed that the hatching time was delayed by 8 hours. After 60 days, significant differences were observed in the treatments of 200 and 2000 μg/l when compared to the control treatment. The hatching time of the embryos was delayed by 10 and 6 hours, respectively. Overall, it can be inferred that the embryos exposed to higher concentrations and longer durations of polystyrene microplastics exhibited slower growth stages and later hatching compared to the control treatment. Therefore, to prevent long-term consequences for aquatic populations, more research and monitoring of microplastic pollution in aquatic ecosystems will be necessary.

کلیدواژه‌ها [English]

  • Aquatic ecosystems
  • Embryo development
  • Microplastics
  • Polystyrene
  • Zebrafish
Andrady, A.L., Neal, M.A., 2009. Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1526), 1977-1984.
Barnes, D. K., Galgani, F., Thompson, R.C., Barlaz, M., 2009. Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1526), 1985-1998.
Besseling, E., Foekema, E.M., Van Franeker, J.A., Leopold, M.F., Kühn, S., Rebolledo, E.B., Koelmans, A. A., 2015. Microplastic in a macro filter feeder: humpback whale Megaptera novaeangliae. Marine Pollution Bulletin 95(1), 248-252.
Besseling, E., Wang, B., Lürling, M., Koelmans, A.A., 2014. Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environmental Dcience & Technology 48(20), 12336-12343.
Chen, P. J., Wu, W. L., Wu, K. C. W., 2013. The zerovalent iron nanoparticle causes higher developmental toxicity than its oxidation products in the early life stages of medaka fish. Water Research, 47(12), 3899-3909.
Cheshire, A. C., Adler, E., Barbière, J., Cohen, Y., Evans, S., Jarayabhand, S., Westphalen, G., 2009. UNEP/IOC Guidelines on Survey and Monitoring of Marine Debris. UNEP Regional Seas Reports and Studies, (186).
De Marco, G., Conti, G.O., Giannetto, A., Cappello, T., Galati, M., Iaria, C., Maisano, M., 2022. Embryotoxicity of polystyrene microplastics in zebrafish Danio rerio. Environmental Research 208, 112552.
Ding, J., Zhang, S., Razanajatovo, R. M., Zou, H., Zhu, W., 2018. Accumulation, tissue distribution, and biochemical effects of polystyrene microplastics in the freshwater fish red tilapia (Oreochromis niloticus). Environmental Pollution 238, 1-9.
Duan, Z., Duan, X., Zhao, S., Wang, X., Wang, J., Liu, Y., Wang, L., 2020. Barrier function of zebrafish embryonic chorions against microplastics and nanoplastics and its impact on embryo development. Journal of Hazardous Materials 395, 122621.
Foley, C.J., Feiner, Z.S., Malinich, T.D., Höök, T.O., 2018. A meta-analysis of the effects of exposure to microplastics on fish and aquatic invertebrates. Science of the Total Environment 631, 550-559.
Galloway, T.S., 2015. Micro-and nanoplastics and human health. In Marine anthropogenic litter (pp. 343-366). Springer, Cham.
Garrido, S., Linares, M., Campillo, J.A., Albentosa, M., 2019. Effect of microplastics on the toxicity of chlorpyrifos to the microalgae Isochrysis galbana, clone t-ISO. Ecotoxicology and Environmental Safety 173, 103-109.
Geyer, R., Jambeck, J.R., Law, K.L., 2017. Production, use, and fate of all plastics ever made. Science Advances 3(7), e1700782.
He, L., Zhang, Y., Wang, Y., Wu, Y., Chen, L., Fu, R., Tang, T., 2018. Toxic Effects of Micro-plastics on Zebrafish Embryos. Agricultural Biotechnology7(5), 112-115.
Hidalgo-Ruz, V., Gutow, L., Thompson, R.C., Thiel, M., 2012. Microplastics in the marine environment: a review of the methods used for identification and quantification. Environmental Science & Technology 46(6), 3060-3075.
Hopewell, J., Dvorak, R., Kosior, E., 2009. Plastics recycling: challenges and opportunities. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1526), 2115-2126.
Huang, H., Huang, C., Wang, L., Ye, X., Bai, C., Simonich, M.T., Dong, Q., 2010. Toxicity, uptake kinetics, and behavior assessment in zebrafish embryos following exposure to perfluorooctanesulphonic acid (PFOS). Aquatic Toxicology 98(2), 139-147.
Incardona, J. P., Scholz, N. L., 2016. The influence of heart developmental anatomy on cardiotoxicity-based adverse outcome pathways in fish. Aquatic Toxicology 177, 515-525.
Karbalaei, S., Hanachi, P., Walker, T.R., Cole, M., 2018. Occurrence, sources, human health impacts, and mitigation of microplastic pollution. Environmental Science and Pollution Research 25(36), 36046-36063.
Lei, L., Wu, S., Lu, S., Liu, M., Song, Y., Fu, Z., He, D., 2018. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans. Science of the Total Environment 619, 1-8.
Luís, L. G., Ferreira, P., Fonte, E., Oliveira, M., Guilhermino, L., 2015. Does the presence of microplastics influence the acute toxicity of chromium (VI) to early juveniles of the common goby (Pomatoschistus microps)? A study with juveniles from two wild estuarine populations. Aquatic Toxicology 164, 163-174.
Ma, Y., Han, J., Guo, Y., Lam, P. K., Wu, R. S., Giesy, J. P., Zhou, B., 2012. Disruption of endocrine function in in vitro H295R cell-based and in in vivo assay in zebrafish by 2, 4-dichlorophenol. Aquatic Toxicology106, 173-181.
Moore, C. J., 2008. Synthetic polymers in the marine environment: a rapidly increasing, long-term threat. Environmental Research 108(2), 131-139.
Ong, K. J., Zhao, X., Thistle, M. E., MacCormack, T. J., Clark, R. J., Ma, G., Goss, G.G., 2014. Mechanistic insights into the effect of nanoparticles on zebrafish hatch. Nanotoxicology 8(3), 295-304.
Peters, C.A., Bratton, S.P., 2016. Urbanization is a major influence on microplastic ingestion by sunfish in the Brazos River Basin, Central Texas, USA. Environmental Pollution 210, 380-387.
Prokić, M.D., Radovanović, T.B., Gavrić, J.P., Faggio, C., 2019. Ecotoxicological effects of microplastics: Examination of biomarkers, current state, and future perspectives. TrAC Trends in Analytical Chemistry 111, 37-46.
Qiang, L., Cheng, J., 2021. Exposure to polystyrene microplastics impairs the gonads of zebrafish (Danio rerio). Chemosphere 263, 128161.
Rochman, C.M., Kurobe, T., Flores, I., Teh, S.J., 2014. Early warning signs of endocrine disruption in adult fish from the ingestion of polyethylene with and without sorbed chemical pollutants from the marine environment. Science of the Total Environment 493, 656-661.
Sadri, S.S., Thompson, R.C., 2014. On the quantity and composition of floating plastic debris entering and leaving the Tamar Estuary, Southwest England. Marine Pollution Bulletin 81(1), 55-60.
Sano, K., Inohaya, K., Kawaguchi, M., Yoshizaki, N., Iuchi, I., Yasumasu, S., 2008. Purification and characterization of zebrafish hatching enzyme–an evolutionary aspect of the mechanism of egg envelope digestion. The FEBS Journal 275(23), 5934-5946.
Scholz, S., Fischer, S., Gündel, U., Küster, E., Luckenbach, T., Voelker, D., 2008. The zebrafish embryo model in environmental risk assessment—applications beyond acute toxicity testing. Environmental Science and Pollution Research 15(5), 394-404.
Sharma, S., Chatterjee, S., 2017. Microplastic pollution, a threat to marine ecosystem and human health: a short review. Environmental Science and Pollution Research 24, 21530-21547.
Sun, L., Zuo, Z., Chen, M., Chen, Y., Wang, C., 2015. Reproductive and transgenerational toxicities of phenanthrene on female marine medaka (Oryzias melastigma). Aquatic Toxicology 162, 109-116.
Wang, J., Li, Y., Lu, L., Zheng, M., Zhang, X., Tian, H., Ru, S., 2019. Polystyrene microplastics cause tissue damages, sex-specific reproductive disruption and transgenerational effects in marine medaka (Oryzias melastigma). Environmental Pollution 254, 113024.
Zhang, X., Hecker, M., Jones, P.D., Newsted, J., Au, D., Kong, R., Giesy, J.P., 2008. Responses of the medaka HPG axis PCR array and reproduction to prochloraz and ketoconazole. Environmental Science & Technology42(17), 6762-6769.
Zon, L.I., Peterson, R.T., 2005. In vivo drug discovery in the zebrafish. Nature Reviews Drug Discovery 4(1), 35-44.