بررسی الگوهای حرکتی دود ناشی از آتش‌سوزی تالاب هورالعظیم با تلفیق تصاویر مودیس و مدل CALPUFF

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه محیط زیست، دانشکدة منابع طبیعی، دانشگاه صنعتی خاتم الانبیاء بهبهان، بهبهان، ایران.

10.22059/jne.2023.362988.2583

چکیده

تالاب هورالعظیم به‌عنوان یکی از اکوسیستم­ های ارزشمند زیستی در جنوب غربی ایران در سال 1397 با رخدادهای آتش­ سوزی متعددی روبه‌رو بوده است. هدف تحقیق حاضر، مدل­ سازی پراکنش دود ناشی از این آتش ­سوزی­ ها بوده است. بدین‌منظور از تصاویر ماهواره­ای مودیس در بازه­ های زمانی وقوع رخدادهای آتش­ سوزی، جهت برآورد نرخ انتشار ذرات معلق استفاده شد. سپس با استفاده از مدل CALPUFF از تلفیق داده ­های هواشناسی هفت ایستگاه سینوپتیک در دو کشور ایران و عراق، شرایط اکولوژیک منطقه و نرخ انتشار حاصل از سنجش ­از­دور، مقدار متوسط غلظت 24 ساعتة ذرات معلق کوچک­تر از 10 میکرون شبیه­ سازی شد. براساس نتایج به ­دست ­آمده، بیشترین مقدار نرخ انتشار دود ناشی از آتش­سوزی، با 0/0024گرم بر مترمربع در ثانیه، در روز 18 شهریور­ماه برآورد شد. در این روز جمعیتی بالغ بر 42700 نفر در معرض غلظت ­های بالاتر از حد استاندارد ذرات معلق کوچک­تر از 10 میکرون قرار داشتند. تلفیق داده ­های سنجش ­از­دور با مدل ­های پراکنش آلودگی هوا می­ تواند رویکرد بسیار مناسبی در شناسایی گستره­ های مکانی و زمانی ارزیابی کیفیت هوا در رخدادهای آتش ­سوزی طبیعی باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Investigation of smoke movement patterns from the Haur-Al-Azim wetland fire using a combination of MODIS imagery and the CALPUFF model

نویسندگان [English]

  • Fatemeh Mahamudi
  • Hossein Madadi
  • Hossein Moradi
  • Gholamreza Sabzgabaei

Department of Environmental Sciences, Faculty of Natural Resource, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.

چکیده [English]

Haur-Al-Azim, an important ecosystem in the southwest of Iran, suffered numerous wildfires in 2018. This study aims to model the dispersal of smoke resulting from those wildfires. In order to achieve this, the emission rate of particulate matter was calculated utilizing MODIS products. The study made use of data from seven climate stations in Iran and Iraq, together with local ecological conditions and emission rates, to simulate 24-hour means of PM10 through the use of the CALMET/CALPUFF package model. The study found that on September 9, 2018, the highest emission rate was measure at 0.0024 g/m2/s. This resulted in more than 42700 individuals being exposed to PM10 concentrations that exceeded the standard. Integrating remote sensing data into an air pollution modeling system can be used as an identification method to asses air quality from a spatial and temporal perspective.

کلیدواژه‌ها [English]

  • Air pollution
  • Climate data
  • Remote sensing. Particles
CCI, E. L.C., 2017. Product user guide version 2.0. UCL-Geomatics, London, UK, 105 p.
Chu, D.A., Kaufman, Y.J., Zibordi, G., Chern, J.D., J., Mao, C. Li, Holben, B.N., 2003. Global monitoring of air pollution over land from the Earth Observing System‐Terra Moderate Resolution Imaging Spectroradiometer (MODIS). Journal of Geophysical Research: Atmospheres 108(21), 1-18.
Dehcheshmeh, M.M., Ghaedi, S., 2020. Climate Change and Ecological Migration: A Study of Villages in the Province of Khuzestan, Iran, Environmental Research. Engineering and Management 76(1), 6-19.
Ellicott, E., Vermote, E., Giglio, L., Roberts, G., 2009. Estimating biomass consumed from fire using MODIS FRE. Geophysical Research Letters 36(13), 1-5.
EPA, 2009. AQI: A Guide to Air Quality and Your Health. USA, EPA, 12 p.
Freeborn, P.H., Wooster M. J., Roy D. P., Cochrane M. A., 2014. Quantification of MODIS fire radiative power (FRP) measurement uncertainty for use in satellite‐based active fire characterization and biomass burning estimation. Geophysical Research Letters 41(6), 1988-1994.
Garstecki, T., Amr, Z., 2011. Biodiversity and ecosystem management in the Iraqi Marshlands–screening study on potential World Heritage Nomination. IUCN (International Union for Conservation of Nature), Amman, Jordan, 189 p.
Global Modeling & Assimilation Office (GMAO), 2015. MERRA-2 tavg1_2d_lnd_Nx: 2D, 1-Hourly, Time-averaged, Single-level, Assimilation, Land Surface Diagnostics V5.12.4. Accessed 2 March 2017. Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, MD, USA.
Hauptman, M., Balmes, J.R., Miller, M.D., 2020. The hazards of wildfire smoke exposure for children. Current Problems in Pediatric and Adolescent Health Care 100756.
Henderson, S.B., Burkholder, B., Jackson, P.L., Brauer, M., Ichoku, C., 2008. Use of MODIS products to simplify and evaluate a forest fire plume dispersion model for PM10 exposure assessment. Atmospheric Environment 42(36), 8524-8532.
Hsu, N.C., Tsay, S.C., King, M.D., Herman, J.R., 2004. Aerosol properties over bright-reflecting source regions. IEEE Transactions on Geoscience and Remote Sensing 42(3), 557-569.
Ichoku, C., Kaufman, Y.J., 2005. A method to derive smoke emission rates from MODIS fire radiative energy measurements. IEEE transactions on Geoscience and Remote Sensing 43(11), 2636-2649.
Ichoku, C., Giglio, L., Wooster, M.J., Remer, L.A., 2008, Global characterization of biomass-burning patterns using satellite measurements of fire radiative energy. Remote Sensing of Environment 112, 2950-2962.
Ismail, R.R., Al-Abudi, B.Q., Hussein, Z.F., 2020. Land cover change detection using satellite images based on modified spectral angle mapper method. Plant Archives 20(1), 2363-2371.
Jarvis A, Reuter, H., Nelson, A., Guevara, E., 2019. Hole-filled SRTM for the globe version 4. Available from the cgiar-csi SRTM 90m Database.
Jordan, N.S., Ichoku, C., Hoff, R.M., 2008. Estimating smoke emissions over the US Southern Great Plains using MODIS fire radiative power and aerosol observations. Atmospheric Environment 42(9), 2007-2022.
Kadhim, A.A., Shortridge, A., Al-Nasrawi, A.K., 2021. Causes and consequences of environmental degradation along the Shatt Al–Arab River: a coupled human and natural systems (CHANS) perspective. GeoJournal 86, 2709-2722.
Kaiser, J.W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L., Morcrette, J-J., 2012. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 9(1), 527-554.
Kaufman, Y.J., Remer, L. A., Ottmar, R.D., Ward, D.E., Li, R.R., Kleidman, R., Fraser, R.S., Flynn, L. P., McDougal, D., Shelton, G., 1996. Relationship between remotely sensed fire intensity and rate of emission of smoke: SCAR-C experiment, Global Biomass Burning, pp. 685-696.
Kaufman, Y.J., Justice, C.O., 1998. Algorithm technical background document MODIS FIRE PRODUCTS, version 2, 30-35.
Kaufman, Y.J., Tanré, D., 1998. Algorithm for remote sensing of tropospheric aerosol from MODIS, NASA MODIS Algorithm Theoretical Basis Documen, Goddard Space Flight Center 85, 3-68.
Kaufman, Y.J., Ichoku, C., Giglio, L., v, S. x, Chu, D.A., Hao, W.M., Li, R.R., Justice, C.O., 2003. Fire and smoke observed from the Earth Observing System MODIS instrument products, validation, and operational use. International Journal of Remote Sensing 24(8), 1765-1781.
Lassman, W., Ford, B., Gan, R. W., Pfister, G., Magzamen, S., Fischer, E. V., Pierce, J. R., 2017. Spatial and temporal estimates of population exposure to wildfire smoke during the Washington state 2012 wildfire season using blended model, satellite, and in situ data. GeoHealth 1(3), 106-121.
Li, X., Song, W., Lian, L., Wei, X., 2015. Forest fire smoke detection using back-propagation neural network based on MODIS data. Remote Sensing 7(4), 4473-4498.
Liu J.C., Pereira, G., Uhl, S.A., 2015. A systematic review of the physical health impacts from nonoccupational exposure to wildfire smoke. Environmental Research 136, 120-132.
Liu, M., Song, Y., Yao, H., Kang, Y., Li, M., Huang, X., Hu, M., 2015. Estimating emissions from agricultural fires in the North China Plain based on MODIS fire radiative power. Atmospheric Environment 112, 326-334.
Long J.W., Tarnay, L.W., North, M.P., 2018. Aligning smoke management with ecological and public health goals. Journal of Forestry 116, 76-86.
Lu, X., Zhang, X., Li, F., Cochrane, M.A., 2019. Investigating Smoke Aerosol Emission Coefficients Using MODIS Active Fire and Aerosol Products: A Case Study in the CONUS and Indonesia. Journal of Geophysical Research: Biogeosciences 124(6), 1413-1429.
Lumbierres, M., Méndez, P.F., Bustamante, J., Soriguer, R., Santamaría, L., 2017. Modeling biomass production in seasonal wetlands using MODIS NDVI land surface phenology. Remote Sensing 9(4), 392-410.
Mazzoni, D., Logan, J.A., Diner, D., Kahn, R., Tong, L., Q., 2007. A data-mining approach to associating MISR smoke plume heights with MODIS fire measurements. Remote Sensing of Environment 107(1-2), 138-148.
Mills, D., Jones, R., Wobus, C., Ekstrom, J., Jantarasami, L., Juliana, A. Crimmins, A., 2018. Projecting age-stratified risk of exposure to inland flooding and wildfire smoke in the United States under two climate scenarios. Environ Health Perspect 126(4), 047007.
Mitsch W.J., Gosselink, J.G., 2007. Wetlands. 4th ed. Hoboken, NJ: John Wiley & Sons, 582 p.
Muhsin, I.J., 2011. Al-hawizeh marsh monitoring method using remotely sensed images, Iraqi Journal of Science 52(3), 381-387.
Myers-Pigg, A.N., Griffin, R.J., Louchouarn, P., Norwood, M.J., Sterne, A. Cevik, B.K., 2016. Signatures of biomass burning aerosols in the plume of a saltmarsh wildfire in South Texas. Environmental Science & Technology 50(17), 9308-9314.
Naeher LP, Brauer, M., Lipsett, M., Zelikoff, J.T., Simpson, C.D., Koenig, J.O., Kirk, R.S., 2007, Woodsmoke health effects: a review. Inhalation Toxicology 19(1), 67-106.
Reid, C.E., Brauer, M., Johnston, F.H., Jerrett, M., Balmes, J.R., Elliott, C.T., 2016. Critical review of health impacts of wildfire smoke exposure. Environmental Health Perspectives 124(9), 1334-1343.
Reid, J.S., Eck, T.F., Christopher, S.A., R., Koppmann, Dubovik, O., Eleuterio, D.P., Holben, B.N., Reid,E.A., Zhang, J., 2005. A review of biomass burning emissions part III: intensive optical properties of biomass burning particles. Atmospheric Chemistry and Physics 5, 827-849.
Reid, C.E., Maestas, M.M., 2019. Wildfire smoke exposure under climate change: impact on respiratory health of affected communities. Current Opinion in Pulmonary Medicine 25(2), 179-187.
Reid, C., Jerrett, M., Tager, I., Petersen, M., Morefield, P., Balmes, J. R., 2013. Spatiotemporal modeling of wildfire smoke exposure in Northern California using satellite data and chemical transport models. In ISEE Conference, Basel, Switzerland. 4826 p.
Remy, S., Kaiser, J.W., 2014. Daily global fire radiative power fields estimation from one or two MODIS instruments. Atmospheric Chemistry and Physics 14, 13377-13390.
Rice M.B., Thurston, G.D., Balmes, J.R., Pinkerton, K.E., 2014. Climate change. A global threat to cardiopulmonary health. American Journal of Respiratory and critical Care Medicine 189(5), 512–519.
Rood, A.S., 2014. Performance evaluation of AERMOD, CALPUFF, and legacy air dispersion models using the Winter Validation Tracer Study dataset. Atmospheric Environment 89, 707-720.
Scire, J.S., Strimaitis, D.G., Yamartino, R.J., 2000. A user’s guide for the CALPUFF dispersion model, Earth Technical Incorporated. pp. 1-521.
Settele, J., Scholes, R., Betts, R.A., Bunn, S., Leadley, P., D., Nepstad, Overpeck, J., Taboada, M.A., Fischlin, A., Moreno, J.M., Root, T., 2015. Terrestrial and inland water systems, In Climate change 2014 impacts, adaptation and vulnerability: Part A: Global and sectoral aspects, Cambridge University Press, 89 p.
Smith, A.M.S., Wooster, M.J., 2005. Remote classification of head and backfire types from MODIS fire radiative power observations. International Journal of Wildland Fire 14, 249-254.
US Environmental Protection Agency, 2012. Report to Congress on Black Carbon (EPA-450/R-12-001), US Environmental Protection Agency. Washington, DC, 388 p.
Val Martin, M., Logan, J.A., Kahn, R.A., Leung, F.-Y., Nelson, D.L., Diner, D.J., 2010. Smoke injection heights from fires in North America: Analysis of 5 years of satellite observations. Atmospheric Chemistry and Physics 10, 1491-1510.
Vermote, E., Ellicott, E., Dubovik, O., Lapyonok, T., Chin, M., Giglio, L., Roberts, G.J., 2009. An approach to estimate global biomass burning emissions of organic and black carbon from MODIS fire radiative power. Journal of Geophysical Research: Atmospheres 114, D18205.
Weise, D.R., Wright, C.S., 2014. Wildland fire emissions, carbon and climate: characterizing wildland fuels. Forest Ecology and Management 317, 26-40.
Westerling AL, Hidalgo, H.G., Cayan, D.R., Swetnam, T.W., 2006. Warming and earlier spring increase western US forest wildfire activity. Science 313(5789), 940-943.
Wiedinmyer, C., Quayle, B., Geron, C., Belote, A., McKenzie, D., X., Zhang, O’Neill, S., Wynnen, K.K., 2006. Estimating emissions from fires in North America for air quality modeling. Atmospheric Environment 40(19), 3419-3432.
Williamson, G.J., Price, O.F., Henderson, S.B., Bowman, D.M., 2013. Satellite-based comparison of fire intensity and smoke plumes from prescribed fires and wildfires in south-eastern Australia. International Journal of Wildland Fire 22(2), 121-129.
William J. Mitsch, Bernal, B., Hernandez, M.E., 2015. Ecosystem services of wetlands, International Journal of Biodiversity Science. Ecosystem Services & Management 11(1), 1-4.
Williamson GJ, Bowman, D., Price, O.F., Henderson, S.B., Johnston, F.H., 2016. A transdisciplinary approach to understanding the health effects of wildfire and prescribed fire smoke regimes. Environmental Research Letters 11(12), 125009.
Wooster, M.J., Zhang, Y.H., 2004. Boreal forest fires burn less intensely in Russia than in North America. Geophysical Research Letters 31(20), L20505.