ارزیابی تنوع ژنتیکی کرم‌های خاکی در زمین‌های کشاورزی و مراتع زاگرس شمالی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه تنوع زیستی، پژوهشکدة علوم محیطی، دانشگاه شهید بهشتی، تهران، ایران.

2 گروه اگرواکولوژی، پژوهشکدة گیاهان و مواد اولیة دارویی، دانشگاه شهید بهشتی، تهران، ایران.

10.22059/jne.2023.356720.2537

چکیده

بیشترین بخش تنوع زیستی بوم‌‌سازگان‌های خشکی، در مراتع و زمین‌های کشاورزی است. رشته‌ کوه زاگرس به‌لحاظ اهمیت زیست‌شناختی از غنی‌ترین و متنوع‌ترین تنوع زیستی برخوردار است که با مخاطرات تغییر کاربری اراضی و گونه‌های مهاجم مواجه می‌باشد. کرم‌های خاکی، مهندسان اکوسیستم خاک در فرآیندهای فیزیکوشیمیایی خاک و مطالعات تکاملی بسیار مورد توجه قرار گرفته‌اند. پژوهش‌های اخیر حاکی از اثر نامطلوب فعالیت‌های انسانی و تغییر کاربری اراضی بر تنوع کرم‎های خاکی است. از آنجا که شناسایی کرم­ های خاکی با استفاده از روش‌های ریخت‌شناسی دارای ابهاماتی است؛ براین اساس برای تفکیک کرم ­ها نیازمند بکارگیری راهکارهای ژنتیکی و استفاده از نشانگرهای مولکولی هستیم. در این پژوهش با استفاده از اطلاعات ریخت‌‌‌شناسی و نشانگر مولکولی COI، واحدهای عملکردی تاکسونومیک OTU) ها)[1] در کرم‌های خاکی شناسایی شدند. سپس با استفاده ازروش تجزیه و تحلیل آماری چندفاکتوری تأثیر کاربری‌های زراعی بر تنوع ژنتیکی کرم‌های خاکی در زاگرس مرکزی، شهرستان بروجرد مورد بررسی قرار گرفت. براساس نتایج درخت تبارشناختی، نمونه­های به‌دست آمده از این پژوهش به 13 OTU متعلق به هفت جنس تفکیک شدند. نتایج مقایسة مراتع و زمین‌های زراعی گندم، یونجه، چغندرقند و شبدر نشان داد که OTUهای زمین‌های زراعی، همگی متعلق به خانوادة Lumbricidae و OTU های مراتع علاوه بر این خانواده، در خانواده‌های Megascolecidae و Hormogastridae قرار داشت. در مجموع، چهار جنس Helodrilus، Aporrectodea، Bimastos و Allolobophora در زمین‌های کشاورزی و شش جنس Metaphire، Aporrectodea، Bimastos، Esenia، Allolobophora و Hormogaster در مراتع مشاهده گردید. نتایج تجزیه و تحلیل رتبه‌بندی روش تجزیه و تحلیل چندفاکتوری در گروه‌های کاربری زمین، ویژگی‌های فیزیکوشیمیایی خاک و شاخص‌های فراوانی و تنوع زیستی OTUهای کرم‌های خاکی با نه فاکتور در 36 متغیر نشان داد کهOTU ‌ های C، H و I همگی از گونة Aporrectodea rosea بیشترین کارآیی براساس تجزیه و تحلیل چند فاکتوری را در فراوانی و تنوع زیستی داشته است. شاخص کارآیی تنوع زیستی کرم‌های خاکی بوم‌سازگان مراتع در تمامی موارد بیشتر از سیستم‌های کشاورزی بوده است. کشت یونجه در مقایسه با سایر بوم‌سازگان‌های زراعی (گندم، چغندرقند و شبدر) بیش‌ترین شاخص کارآیی در تنوع زیستی کرم‌های خاکی را داشته است و کمترین شاخص کارآیی در کشت گندم بوده است. زمین‌های زراعی چغندرقند و یونجه تنوعOTU  بیشتری در مقایسه با زمین‌های زراعی شبدر و گندم داشته است. گزینش کشت یونجه در تناوب زراعی سبب تنوع زیستی کرم‌های خاکی و پایداری بوم‌‌‌نظام‌های کشاورزی خواهد شد. با توجه به اهمیت کرم‌های خاکی در ارائة خدمات اکوسیستم و کیفیت خاک، ضروری است که پژوهش‌های بیشتری در زمینة اثر بوم‌نظام‌های زراعی رایج بر تنوع زیستی کرم‌های خاکی صورت گیرد.
 
[1]Operational Taxonomic Unit (OTU)

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of genetic diversity in earthworms for agricultural fields and pastures of northern Zagros

نویسندگان [English]

  • Shadi Karimifard 1
  • Fraham Ahmadzade 1
  • Fateme Aghamir 2

1 Department of Biodiversity, Institute of Environmental Sciences, Shahid Beheshti University, Tehran, Iran.

2 Department of Agroecology, Medicinal Plants and Drugs Research Institute Shahid Beheshti University, Tehran, Iran.

چکیده [English]

The largest part of the biodiversity of terrestrial ecosystems is in pastures and agricultural lands. In terms of biological importance, the Zagros mountain range has the richest and most diverse biodiversity, which faces the dangers of land use change and invasive species. Earthworms, soil ecosystem engineers, have been of great interest in soil physicochemical processes and evolutionary studies. Recent studies indicate the adverse effect of human activities and land use change on the diversity of earthworms. Since the identification of earthworms, using morphological methods is ambiguous; therefore, we need to use genetic methods and molecular markers to separate worms. In this study, we identified taxonomic functional units (OTUs) in earthworms using morphological information and molecular marker COI. Then, we have investigated the effect of agricultural uses on the genetic diversity of earthworms in Central Zagros, Borujerd County using multifactorial statistical analysis. We separated into 13 OTUs belonging to seven genera based on the results of the genealogical tree. The results of the comparison of wheat, alfalfa, sugar beet and clover pastures and farmlands showed that the OTUs of the farmlands all belong to the Lumbricidae family and the OTUs of the pastures, in addition to this family, were in the Megascolecida and Hormogastridae families. In total, we observed four genera of Helodrilus, Aporrectodea, Bimastos and Allolobophora in agricultural lands and six genera of Metaphire, Aporrectodea, Bimastos, Esenia, Allolobophora and Hormogaster in pastures. The results of the ranking analysis of the multifactorial analysis method in land use groups, soil physicochemical characteristics and indicators of abundance and biodiversity of earthworm OTUs with nine factors in 36 variables showed that OTUs C, H and I, all of Aporrectodea rosea species, are the most effective based on multi-factorial analysis in abundance and biodiversity. The biodiversity efficiency index of earthworms of grassland ecosystems was higher than agricultural ecosystems in all cases. Compared to other agricultural ecosystems (wheat, sugar beet and clover), alfalfa cultivation had the highest efficiency index in earthworm biodiversity and the lowest efficiency index was in wheat cultivation. Sugar beet and alfalfa croplands had more OTU diversity compared to clover and wheat croplands. The selection of alfalfa cultivation in crop rotation will increase the biodiversity of earthworms and the stability of agricultural ecosystems. Considering the importance of earthworms in providing ecosystem services and soil quality, it is necessary to conduct more research on the effect of common agricultural ecosystems on the biodiversity of earthworms.

کلیدواژه‌ها [English]

  • Barcoding
  • Biodiversity
  • Land use
  • Soil Oligocheata
  • Operational Taxonomic Units
Arslan, N., Timm, T., Rojo, V., Vizcaíno, A., Schmelz, R.M., 2018, A new species of Enchytraeus (Enchytraeidae, oligochaeta) from the profundal of Lake Van, the world’s largest Soda Lake (Turkey, East Anatolia). Zootaxa 4382(2), 367-380.
Bart, S., Amossé, J., Lowe, C.N., Mougin, C., Péry, A.R.R., Pelosi, C., 2018. Aporrectodea caliginosa, a relevant earthworm species for a posteriori pesticide risk assessment: current knowledge and recommendations for culture and experimental design. Environmental Science and Pollution Research 25(34), 33867-33881.
Bartz, C., Luise, M., Gardner, G., Gonc, M., Klauberg, O., Wooster, S., Decaëns, T., Baretta, D., 2014. Earthworm richness in land-use systems in Santa Catarina, Brazil. Applied Soil Ecology 83, 59-70.
Basker, A., Macgregor, A.N., Kirkman, J.H., 1993. Exchangeable potassium and other cations in non-ingested soil and casts of two species of pasture earthworms. Soil Biology and Biochemistry 25(12), 1673-1677.
Baturina, M., 2012. Distribution and diversity of aquatic Oligochaeta in small streams of the middle taiga. Turkish Journal of Zoology 36(1), 75-84.
Berman, D. I., Meshcheryakova, E. N., 2013. Ranges and cold hardiness of two earthworm subspecies (Eisenia nordenskioldi, Lumbricidae, Oligochaeta). Biology Bulletin 40(9), 719-727.
Bessolitsyna, E.P., 2012. Ecological and geographic distribution patterns of earthworms (Oligochaeta, Lumbricidae) in landscapes of southern middle Siberia. Russian Journal of Ecology 43(1), 82-85.
Blakemore R.J., 2006. A Series of Searchable Texts on Earthworm Biodiversity, Ecology and Systematics from Various Regions of the World. In: Kaneko N, Ito MT (Eds) COE Soil Ecology Research Group, Yokohama National University, Japan. CD-ROM compliant with ICZN (1999: Article 8) for official publication.
Bozorgi, F., Seiedy, M., Malek, M., Aira, M., Pérez-Losada, M., Domínguez, J., 2019. Multigene phylogeny reveals a new Iranian earthworm genus (Lumbricidae: Philomontanus) with three new species. PLoS ONE 14(1), 1-16.
Bozorgi, f., Sidi, M., Malek, M., 2018. Earthworms of North Zagros and investigation of genetic diversity of Dendrobaena byblica (Rosa, 1893) species complex. PhD thesis in the field of animal biosystematics. University of Tehran. (In Persian)
Braga, L.P.P., Yoshiura, C.A., Borges, C. D., Horn, M.A., Brown, G.G., Drake, H.L., Tsai, S. M., 2016. Disentangling the influence of earthworms in sugarcane rhizosphere. Scientific Reports 6, 1-13.
Callaham, M.A., Richter, D.D., Coleman, D.C., Hofmockel, M., 2006. Long-term land-use effects on soil invertebrate communities in Stouhern Piedmont soils, USA. European Journal of Soil Biology 42(SUPPL. 1).
Calsamiglia, X., 1990. The financing of the autonomous communities and the principle of solidarity. De Economía Pública.
Chiu, C., Wang, Y., Walther, B. A., Chao, A., 2014. An Improved Nonparametric Lower Bound of Species Richness via a Modified Good–Turing Frequency Formula. September, pp. 671-682.
Curry, J. P., Schmidt, O., 2007. The feeding ecology of earthworms - A review. Pedobiologia 50(6), 463-477.
Darmawan, A., Atmowidi, T., Manalu, W., Bambang Suryobroto., 2017. Land-use change on Mount Gede, Indonesia, reduced native earthworm populations and diversity. Australian Journal of Zoology 65(4), 217–225.
Decaëns, T., Porco, D., Rougerie, R., Brown, G.G., James, S.W., 2013. Potential of DNA barcoding for earthworm research in taxonomy and ecology. Applied Soil Ecology 65, 35-42.
Delgado-Baquerizo, M., Powell, J. R., Hamonts, K., Reith, F., Mele, P., Brown, M. V., Dennis, P.G., Ferrari, B.C., Fitzgerald, A., Young, A., Singh, B.K., Bissett, A., 2017. Circular linkages between soil biodiversity, fertility and plant productivity are limited to topsoil at the continental scale. New Phytologist 215(3), 1186-1196.
Dudley, N., Alexander, S., 2017. Agriculture and biodiversity: a review Agriculture and biodiversity : a review. Biodiversity 8386, 1-5.
Escofier, B., Pagès, J., 1994. Multiple factor analysis (AFMULT package). Computational Statistics and Data Analysis 18(1), 121-140.
EzzatPanah, S., 2008. Taxonomy and biogeography of earthworms of the Chalous watershed and validity of Tarichei model. Master's thesis in Animal Sciences - Animal Biosystematics, Tehran University. (In Persian)
Farhadi, Z., 2011. Identification of earthworms in Kohkiloye and Boyer Ahmad provinces and intraspecies genetic variations of some populations of Eiseniella tetraedra species. Master's thesis in Animal Sciences - Animal Biosystematics, Tehran University. (In Persian)
Farhadi, Z., Malek, M., Elahi, E., 2013. Review of the earthworm fauna of Iran with emphasis on Kohgiluyeh and Boyer-Ahmad Province. Zootaxa 3670(4), 440-448.
Fernández, R., Almodóvar, A., Novo, M., Gutiérrez, M., Díaz Cosín, D. J., 2011. A vagrant clone in a peregrine species: Phylogeography, high clonal diversity and geographical distribution in the earthworm Aporrectodea trapezoides (Dugès, 1828). Soil Biology and Biochemistry 43(10), 2085-2093.
Fernández, R., Almodóvar, A., Novo, M., Gutiérrez, M., Díaz Cosín, D. J., 2013. Earthworms, good indicators for palaeogeographical studies? Testing the genetic structure and demographic history in the peregrine earthworm Aporrectodea trapezoides (Dugès, 1828) in southern Europe. Soil Biology and Biochemistry 58, 127-135.
Foley, J.A., Ramankutty, N., Brauman, K.A., Cassidy, E.S., Gerber, J.S., Johnston, M., Mueller, N.D., O’Connell, C., Ray, D.K., West, P.C., Balzer, C., Bennett, E.M., Carpenter, S.R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, D. and Zaks, D.P.M., 2011 Solutions for a Cultivated Planet. Nature 478, 337-342.
Fragoso, C., Brown, G.G., Patrón, J.C., Blanchart, E., Lavelle, P., Pashanasi, B., Senapati, B., Kumar, T., 1997. Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: The role of earthworms. Applied Soil Ecology 6(1), 17-35.
Groffman, P.M., Fahey, T.J., Fisk, M.C., Yavitt, J.B., Sherman, R.E., Bohlen, P.J., Maerz, J.C., 2015. Earthworms increase soil microbial biomass carrying capacity and nitrogen retention in northern hardwood forests. Soil Biology and Biochemistry, 87, 51–58.
Haluschak P., 2006. Laboratory Methods of Soil Analysis Canada-Manitoba Soil Survey, April 2006
Hebert, P.D.N.,  Gregory, T. R., 2005. The promise of DNA barcoding for taxonomy. Systematic Biology 54(5), 852–859.
Hebert, P.D.N., Gregory, T.R., 2005. The promise of DNA barcoding for taxonomy. In Systematic Biology. Oxford Academic 54(5), 852-859.
Hebert, P.D.N., Penton, E.H., Burns, J.M., Janzen, D.H., Hallwachs, W., 2004. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America 101(41), 14812-14817.
Hendrix, P. F., Bohlen, P. J., 2002. Exotic earthworm invasions in North America: Ecological and policy implications. BioScience 52(9), 801-811.
Hosseini, A., Malek, M., 2014. Taxonomy and biodiversity of earthworms of Chaharmahal and Bakhtiari province. Master's thesis in the field of animal sciences-animal biosystematics. University of Tehran. (In Persian)
Huang, J., Xu, Q., Sun, Z. J., Tang, G. L., Su, Z. Y., 2007. Identifying earthworms through DNA barcodes. Pedobiologia 51(4), 301-309.
Iordache, M., Gaica, I., Borza, I., 2011. Influence of The Management System of Soil and Plant Culture on Earthworms (Oligochaeta: Lumbricidae) in Conditions of Banat Plain. Research Journal of Agricultural Science 43(3), 374-384.
Ivask, M., Kuu, A., Sizov, E., 2007. Abundance of earthworm species in Estonian arable soils. European Journal of Soil Biology 43(SUPPL. 1), 39–42.
Kiss, T.B.W., Chen, X., Ponting, J., Sizmur, T., Hodson, M.E., 2021. Science of the Total Environment Dual stresses of flooding and agricultural land use reduce earthworm populations more than the individual stressors. Science of the Total Environment 754, 142102.
Kwak, S. S., 2018. Agroforestry Biotechnology for Sustainable Agriculture on Marginal Lands. 3(1), 51-53.
Latif, R., Malek, M., 2008. Studying the taxonomy and biogeography of earthworms in the watershed of Haraz and Jajroud rivers and using earthworms as biomarkers. Master's thesis in the field of animal sciences - animal biosystematics. University - Tehran. (In Persian)
Latif, R., Malek, M., Csuzdi, C., 2017. New earthworm records from the Central Zagros Mountain, Iran with description of a new species. North-Western Journal of Zoology 13(2), 326–336.
Latif, R., Malek, M., Sari, A., Mirshamsi Kakhki, F., 2017. Earthworms of Central Zagros and study of genetic diversity of Esenia fetida (Savigny, 1826). PhD thesis in the field of animal biosystematics. University of Tehran. (In Persian)
Lavelle, P., Decaëns, T., Aubert, M., Barot, S., Blouin, M., Bureau, F., Margerie, P., Mora, P., Rossi, J. P. 2006. Soil invertebrates and ecosystem services. European Journal of Soil Biology 42(SUPPL. 1).
Machado, H.M., Moura, N., Sobrinho, A., Elizabeth, M., Correia, F., Osvaldo, M., Magalhães, L., Sotuo, E., Lima, A., 2018. Toxicity of Drilling Waste from Oil Wells on Oligochaeta 25(4), 1–8.
Magnussen, S., Boyle, T.J.B., 1995. Estimating sample size for inference about the Shannon-Weaver and the Simpson indices of species diversity. Forest Ecology and Managemen 7, 35(9), 14.
Marchán, D. F., Fernández, R., Sosa, I. De, Sánchez, N., Cosín, D.J.D., Novo, M., 2018. Integrative systematic revision of a Mediterranean earthworm family : Hormogastridae (Annelida, Oligochaeta). CSIRO, Invertebrate Systematics pp. 652-671.
Marichal, R., Martinez, A. F., Praxedes, C., Ruiz, D., Carvajal, A. F., Oszwald, J., del Pilar Hurtado, M., Brown, G.G., Grimaldi, M., Desjardins, T., Sarrazin, M., Decaëns, T., Velasquez, E., Lavelle, P., 2010. Invasion of Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta) in landscapes of the Amazonian deforestation arc. Applied Soil Ecology 46(3), 443-449.
Mcalpine, D.F., Sullivan, S.A., Mcalpine, F.J.T., Lewis, J.H., Reynolds, J.W., 2020. Earthworms (Lumbricidae and Sparganophilidae) of the grand lake protected natural area, New Brunswick, Canada. 25(6).
Mirmansaf, H., 2012. Taxonomy of earthworms of Tehran province and the role of some of them as biological indicators and investigation of the life cycle of Eisenia fetida species in laboratory conditions. Master's thesis, Tehran University. (In Persian)
Nadi Moghadam, N., 2015. Earthworms of the watershed of Varenge River, Taleghan and Shurroud in Tehran province and the study of the life cycle of Eisenia fetida. Biology - animal sciences - animal biosystematics master's thesis Tehran University. (Savigny, 1826). (In Persian)
Nguyen, L.-T., Schmidt, H.A., Von Haeseler, A., Minh, B.Q., 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32(1), 268-274.
Nicod, C., Leys, B., Ferrez, Y., Manneville, V., Mouly, A., Greffier, B., Hennequin, C., Bouton, Y., Prévost-Bouré, N.C., Gillet, F., 2019. Towards the assessment of biodiversity and management practices in mountain pastures using diagnostic species? Ecological Indicators, 107(, 105584.
Nielsen, U. N., Wall, D. H., Six, J., 2015. Soil Biodiversity and the Environment. Annual Review of Environment and Resources 40, 63-90.
Novo, M., Almodóvar, A., Díaz-Cosín, D.J., 2009. High genetic divergence of hormogastrid earthworms (Annelida, Oligochaeta) in the central Iberian Peninsula: Evolutionary and demographic implications. Zoologica Scripta 38(5), 537–552.
Novo, M., Almodóvar, A., Fernández, R., Trigo, D., Díaz Cosín, D.J., 2010. Cryptic speciation of hormogastrid earthworms revealed by mitochondrial and nuclear data. Molecular Phylogenetics and Evolution 56(1), 507–512.
Nylander, J.A.A., 2004. MrModeltest Version 2. Program Distributed by the Author. Evolutionary Biology Centre, Uppsala University, Uppsala.
Orgiazzi, A., Panagos, P., 2018. Soil biodiversity and soil erosion: It is time to get married: Adding an earthworm factor to soil erosion modelling. Global Ecology and Biogeography 27(10), 1155-1167.
Papini, R., Valboa, G., Favilli, F., Abate, G. L., 2011. Agriculture , Ecosystems and Environment Influence of land use on organic carbon pool and chemical properties of Vertic Cambisols in central and southern Italy. Agriculture, Ecosystems and Environment 140(1–2), 68-79.
Pérès, G., Bellido, A., Curmi, P., Marmonier, P., Cluzeau D., 2010. Relationships between earthworm communities and burrow numbers under different land use systems. Pedobiologia 54(1), 37-44.
Popa, O.P., Murariu, D., Popa, L.O., 2006. Comparison of four DNA extraction methods from invasive freshwater bivalve species (Mollusca, Bivalvia) in Romanian fauna invasive freshwater bivalve species mollusca : Travaux Du Muséum National d’Histoire Naturelle “Grigore Antipa"Antipa”, 527-536.
Pradhan, A., Sahu, S.K., 2011. Effect of Rice Mill Waste Water on Population, Biomass, Rate of Reproduction and Secondary Production of Drawida willsi (Oligochaeta) in Rice Field Agroecosystem Effect of Rice Mill Waste Water on Population, Biomass, Rate of Reproduction and Second. March. IJRRAS
Prendergast-Miller, M.T., Jones, D., Hodson, M.E., 2017. Temporal variation in earthworm abundance and diversity along hedgerow-to-field transects in contrasting agricultural land uses. 19th EGU General Assembly, EGU2017.
Prudhomme, C., Reed, D.W., 1998. Relationship Between Extreme Daily Precipitation and Topography in a Mountainous Region : A Case Studt In Scotland. International Journal of Climatology 18, 1439-1453.
Reynolds, J.W., 2018. Preliminary Key to Turkish Megadriles (Annelida, Clitellata, Oligochaeta), Based on External Characters, Insofar as Possible. John Warren Reynolds 1 and Ý brahim Mete Mý sýrlýo ðlu 2 1. 23(11).
Rosa, M. G. da, Filho, O.K., Bartz, M. L.C., Mafra, Á.L., Sousa, J.P.F.A. de,  Baretta, D., 2015. Divisão 2 - Processos e propriedades do solo Macrofauna Edáfica e Atributos Físicos e Químicos em Sistemas de Uso do Solo no Planalto Catarinense.
Rougerie, R., Decaëns, T., Deharveng, L., Porco, D., James, S. W., Chang, C. H., Richard, B., Potapov, M., Suhardjono, Y., Hebert, P.D.N., 2009. DNA barcodes for soil animal taxonomy. Pesquisa Agropecuaria Brasileira 44(8), 789-802.
Sala, O.E., Chapin, F.S., Armesto, J.J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L. F., Jackson, R. B., Kinzig, A., Leemans, R., Lodge, D. M., Mooney, H.A., Oesterheld, M., Poff, N.L.R., Sykes, M.T., Walker, B.H., Walker, M., Wall, D.H., 2000. Global biodiversity scenarios for the year 2100. Science, 287(5459), 1770-1774.
Sanchooli, N., Roohi Aminjan, A., Latif, R., Sarabandi, V., Riki, A., 2019. Earthworms from northern parts of Sistan and Balouchestan Province, Iran (Oligochaeta , Lumbricidae). Iranian Journal of Animal Biossystematics 15(2), 147-156.
Sankar, A.S., Patnaik, A., 2018. Impact of soil physico-chemical properties on distribution of earthworm populations across different land use patterns in southern India. The Journal of Basic and Applied Zoology 79, 1-18
Santiba, C., Ginocchio, R., Varnero, T., 2007. Evaluation of nitrate leaching from mine tailings amended with biosolids under Mediterranean type climate conditions. Soil Biology and Biochemistry 39(3), 1333-1340.
Schon N.L., Dominati E.J., 2020. Valuing earthworm contribution to ecosystem services delivery, Ecosystem Services, Volume 43, 101092, ISSN 2212-0416,
Sharma, A., Sonah, H., Deshmukh, R. K., Gupta, N.K., Singh, N.K., Sharma, T.R., 2011. Analysis of genetic diversity in earthworms using DNA markers. Zoological Science 28(1), 25-31.
Shekhovtsov, S.V., Berman, D.I., Peltek, S.E., 2015. Phylogeography of the earthworm Eisenia nordenskioldi nordenskioldi (Lumbricidae, Oligochaeta) in northeastern Eurasia. Doklady Biological Sciences 461(1), 85-88.
Shekhovtsov, S.V., Golovanova, E.V., Peltek, S.E., 2013. Cryptic diversity within the Nordenskiold’s earthworm, Eisenia nordenskioldi subsp. Nordenskioldi (Lumbricidae, Annelida). European Journal of Soil Biology 58, 13-18.
Singh, S., Singh, J., Pal, A., 2016. Earthworm as ecological engineers to change the physico-chemical properties of soil : Soil vs vermicast. Ecological Engineering 90, 1–5.
Spellerberg, I. F., Ecology, G., Article, O., Zealand, N., 2003. Ecological sounding a tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the’ Shannon–Wiener’ Index Simpson diversity and the Shannon – Wiener index as special cases of a generalized. Ecography 12, 177-179.
Spurgeon, D.J., Keith, A.M., Schmidt, O., Lammertsma, D.R.,  Faber, J.H., 2013. Land-use and land-management change: relationships with earthworm and fungi communities and soil structural properties. BMC Ecology.
Stojanović, M.,  Karaman, S., 2006. Threat status and distribution of the earthworm genus Helodrilus Hoffmeister, 1845; sensu Zicsi 1985, on the Balkans and the neighboring regions. Biodiversity and Conservation 15(14), 4601-4617.
Stojanović, M., Karaman, S., 2006. Threat status and distribution of the earthworm genus Helodrilus Hoffmeister, 1845; sensu Zicsi 1985, on the Balkans and the neighboring regions. Biodiversity and Conservation 15(14), 4601-4617.
Thakuria, D., Schmidt, O., Finan, D., Egan, D., Doohan, F.M., 2010. Gut wall bacteria of earthworms: A natural selection process. International Society for Microbial Ecology 4(3), 357–366.
Trakhtenbrot, A., Nathan, R., Perry, G., Richardson, D. M., 2005. The importance of long-distance dispersal in biodiversity conservation. Diversity and Distributions 11(2), 173-181.
Visbal-Cadavid, D., Martínez-Gómez, M., Escorcia-Caballero, R., 2020. Exploring university performance through multiple factor analysis: A case study. Sustainability (Switzerland), 12(3), 1-24.
Walkey, B., 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method.
Ward, R.D., Holmes, B.H., O’Hara, T.D., 2008. DNA barcoding discriminates echinoderm species. Molecular Ecology Resources 8(6), 1202-1211.
Winding, A., Rønn, R., Hendriksen, N. B., 1997. Bacteria and protozoa in soil microhabitats as affected by earthworms. Biology and Fertility of Soils 24(2), 133-140.
Zarik Mubaraki, F., 2009. Study of earthworms in Ardabil, East Azerbaijan and West Azerbaijan and molecular investigation of some Dendrobaena byblica populations. Master's thesis in Animal Sciences - Animal Biosystematics, Tehran University. (In Persian)
Zhi-ming, Q. I., Shao-yuan, F., Helmers, M.J., 2012. Modeling Cadmium Transport in Neutral and Alkaline Soil Columns at Various Depths 1. Pedosphere. An International Journal 22(3), 273-282.