ارتقاء سطح حفاظت از تنوع زیستی با بهبود وضعیت شبکه تحت حفاظت کشور، برنامه ریزی سیستماتیک حفاظت با استفاده از الگوریتم Zonation

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه محیط زیست، دانشکده منابع طبیعی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران؛ استادیار گروه محیط زیست دانشگاه آزاد اسلامی واحد اراک

2 دانشگاه تهران

چکیده

انتخاب مناطق حفاظت شده، یکی از مهمترین اقدامات برای حفاظت از تنوع زیستی محسوب می شود. رویکردهای تک منظوره و یا مبتنی بر انتخاب گونه‌های کاریزماتیک منجر به تشکیل شبکه‌ حفاظتی غیر معرف از تنوع زیستی یک کشور می‌گردد. برای رفع این مشکل، رویکرد برنامه‌ریزی سیستماتیک حفاظت معرفی شده است. با توجه به اینکه طبق پیشنهاد مطرح شده توسط UNEP تا سال ۲۰۲۰ سطح مناطق تحت حفاظت کشور باید از ۱۰ درصد تا ۱۷ درصد افزایش یابد، در این پژوهش، الگوریتم Zonation برای اولویت بندی مناطق جدید برای افزوده شدن به شبکه حفاظتی کنونی به کار گرفته شد. به این منظور 36 گونه‌های جایگزین تنوع زیستی متشکل از گونه‌های آندمیک و یا در رده تهدید فهرست سرخ IUCN متعلق به پستانداران، پرندگان، خزندگان و دوزیستان انتخاب شدند. مدل مطلوبیت زیستگاه با روش بیشینه بی نظمی تهیه شد. سپس، الگوریتم Zonation با سه قانون حذف پیکسل‌ زون بندی منطقه هسته‌ای، تابع افزاینده فایده و برنامه ریزی مبتنی بر هدف و با ثابت نگاه داشتن شبکه حفاظتی فعلی بر روی نقشه های مطلوبیت زیستگاه گونه های پیاده شد. انتخاب ۲۰ درصد از مناطق با بالاترین اولویت حفاظتی پیشنهاد شده توسط هر سه روش، حفاظت از زیستگاه گونه های جایگزین را حداقل ۱۶ درصد افزایش می‌دهد. مناطق پیشنهادی توسط روش تابع افزاینده فایده به طور متوسط ۹۸/۳۴ درصد از زیستگاه‌های گونه‌های جایگزین را در بر می‌گیرند که بیش از دو روش زون بندی منطقه هسته‌ای (74/28 درصد) و برنامه ریزی مبتنی بر هدف (1/31 درصد) است.

کلیدواژه‌ها

عنوان مقاله [English]

Improving biodiversity conservation with expansion of protected area network in Iran, systematic conservation planning applying Zonation algorithm

نویسندگان [English]

  • Bahman Shams-Esfandabad 1
  • Mohammad Kaboli 2

1 PhD student in Environment, Department of Environmental Sciences, Faculty of Natural Resources, University of Tehran. Assistant Professor, Department of environment, Arak branch, Islamic Azad University.

2

چکیده [English]

Designation of protected areas is the most important action in conservation of biodiversity. Previous Ad hoc methods and focusing on charismatic species resulted in unrepresentative networks of protected areas. To compensate this problem systematic conservation planning is introduced and applied. Nearly, 10 percent of Iran is designated as protected areas that should be added up to 17% until 2020, as suggested by UNEP. Therefore, we applied Zonation conservation prioritization algorithm to introduce new high priority areas to be added to the current network. We chose 36 endemic and globally threatened enlisted in IUCN red list mammals, birds, reptiles and amphibians as surrogate species. We developed maximum entropy modeling on surrogates to develop habitat suitability models. Zonation approach was applied with all of the three cell removal rules of additive benefit function (ABF), core area zonation (CAZ) and Target based planning (TBP). The current area network was included in all the rules. Selection of the 20% of country area with highest conservation rank based on each rule lead to increase of species habitat conservation by an average of 16%. The ABF is the most efficient rule with conservation of 34.98% of surrogate habitats on average in comparison with CAZ (28.74%) and TBP (31.1%).

کلیدواژه‌ها [English]

  • Systematic conservation planning
  • Zonation algorithm
  • ٍSurrogate species
  • protected area network
  • Iran
Ball, I.R., Possingham, H.P., 2000. Marxan version 1.8.3. Available at: http://www.ecology.uq.edu.au/marxan.htm.
Cowling, R.M., Pressey, R.L., 2003. Introduction to systematic conservation planning in the Cape Floristic Region. Biological Conservation 112, 1-13.
Dudley, N., Parish, J., 2006. Closing the gap. Creating ecologically representative protected area systems: A guide to conducting the gap assessment of protected area system for the Convention on Biological Diversity. Secretariat of the Convention on Biological Diversity. Techinical Serie no. 24, Montreal.
Esfandeh, S., Kaboli, M., Islami, L., 2016. Application of simulated annealing algorithm to systematic prioritization of protected area in Alborz province, Iran. Journal of Animal Environment 9, 105-122 (In Persian).
Farashi, A. and Shariati, M., 2017. Biodiversity hotspots and conservation gaps in Iran. Journal for Nature conservation 39, 37-57.
Franklin, J., 2009. Mapping species distributions; spatial inference and prediction. Cambridge University Press.
Hijmans, R.J.S.E., Cameron, J.L., Parra, P.G., Jones, Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global land areas. International  Journal of  Climatology 25,1965–1978.
Jafari, A., Yavari, A., Bahrami, S., Yarali, N., 2010. Designation of new protected area with application of C-Plan on vegetation types (Case study: Kohgiloye and Boyer Ahmad). Journal of Environmental science 36, 1-12.
Jimenez-Valverde, A, Lobo, J.M., 2007. Threshold criteria for conversion of probability of species presence to either–or presence–absence. Acta Oecologica 31, 361 – 369.
Kaboli, M., Aliabadian, M., Tohidifar, M., Hashemi, A.R., Roslar, K., 2012. Atlas of Birds of Iran. Department of Environment of Iran-University of Tehran.
Karami, M., Ghadirian, T., Faizolahi, k., 2012. Atlas of Mammals of Iran. Department of Environment of Iran-University of Tehran.
Kremen, C., Cameron, A., Moilanen, A., Phillips, S.J., Thomas, C.D., 2008. Aligning Conservation Priorities Across Taxa in Madagascar with High- Resolution Planning Tools. Science 320, 222–226.
Leathwick, J., Moilanen, A., Francis, M., Elith, J., Taylor, P., 2008. Novel methods for the design and evaluation of marine protected areas in offshore waters. Conservation Letters 1, 91–102.
Liu, C., White, M., Newell, G., 2009. Measuring the accuracy of species distribution models: a review. 18th World IMACS/MODSIM Congress, Carins, Australia.
Madjnoonian, H., 2014. Protected Areas: Criteria and Guideline for Selection, Conservation and Management of Protected Areas. Vol 1. Nashr-Day Publications, Tehran, Iran. (in Persian).
Margules, C.R., Pressey, R.L. 2000. Systematic conservation planning, Nature 405, 243–253.
Mehri, A., Salman – Mahini, A., Mirkarimi, S.H., Rezaei, H.R., 2013. Comparison of efficiency of three intelligent algorithms in selection of conservation areas (Case study: Mazandaran province). Journal of Environmental Science. 40, 1-16 (In Persian).
Moilanen, A., 2007. Landscape Zonation, benefit functions and target-based planning: Unifying reserve selection strategies. Biological Conservation 134, 571–579.
Moilanen, A., Anderson, B.J., Eigenbrod, F., Heinemeyer, A., Roy, D.B., 2011. Balancing alternative land uses in conservation prioritization. Ecological Applications 21, 1419–1426.
Moilanen, A., Franco, A.M.A., Early, R.I., Fox, R., Wintle, B., 2005. Prioritizing multiple-use landscapes for conservation: methods for large multi-species planning problems. Proceedings of the Royal Society B: Biological Sciences 272, 1885–1891.
Moilanen, A., Kujala, H., 2008. Zonation: software for spatial planning. v. 2.0. User manual: Online: http://www.helsinki.fi/bioscience/consplan. 136 pp.
Moilanen, A., Wilson, K.A., Possingham, H.P., 2009. Spatial Conservation Prioritization: Quantitative Methods and Computational Tools. Oxford University Press, Oxford. 320 pp.
Moilanen, A., Wintle, B.A., 2007. The boundary-quality penalty: a quantitative method for approximating species responses to fragmentation in reserve selection. Conservation Biology 21, 355-364.
Mozaffari, O., Kamali, K., Fahimi, H., 2015. Atlas of Reptiles of Iran. Department of Environment of Iran.
New South Wales National Parks and Wildlife Service (NSW NPWS).1999. The Conservation Planning System (C-Plan) version 3.11.
Phillips, S.J., Anderson, R.P., Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecological modelling 190, 231-259.
Possingham, H.P., Ball, I.R., Andelman, S., 2000. Mathematical methods for identifying representative reserve networks. In: Ferson S, Burgman M (Eds.), Quantitative Methods for Conservation Biology. Springer-Verlag, New York, pp. 291–305.
Possingham, H.P., Wilson, K.A., Andelman, S.J., Vynne, C.H., 2006. Protected areas. Goals, limitations, and design. Pp. 507–549 in M. J. Groom, G. K. Meffe, C. R. Carroll, eds. Principles of conservation biology. 3rd ed. Sinauer Associates, Inc., Sunderland, MA.
Pressey, R.L., 1998. Algorithms, politics and timber: an example of the role of science in a public, political negotiation process over new conservation areas in production forests In: R.T. Wills and Hobbs RJ, Editors, Ecology for Everyone: Communicating Ecology to Scientists, the Public and the Politicians, Chipping Norton, Surrey Beatty and Sons, NSW pp. 73–87.
Pressey, R.L., Nicholls, A.O., 1989. Efficiency in conservation planning: scoring versus iterative approaches, Biological Conservation 50, 199–218.
Pressey, R.L., Tully, S.L., 1994. The cost of ad hoc reservation: a case study in western New South Wales, Australian Journal of Ecology, 19, 375–384.
Rondinini, C., Chiozza, F., Boitani, L., 2006. High human density in the irreplaceable sites for African vertebrate conservation. Biological Conservation 133, 358-363.
Rouget, M., Cowling, R.M., Pressey, R.L., Richardson, D.M., 2003. Identifying spatial components of ecological and evolutionary processes for regional conservation planning in the Cape Floristic Region, South Africa. Diversity and Distribution 9, 191–210.
Salman – Mahini, A., Saeid, M., Kamyab, H., Nasir-Ahmadi, K., 2013. Comparison of simulated annealing and multi objective land use assessment and allocation in optimal selection of land use. Journal of Applied Ecology 3, 1-12.
Sarkar, s., Illoldi-Rangel, P., 2010. Systematic conservation planning: an updated protocol. Brazilian Journal of Nature Conservation 8, 19-26.
Thomson, J.R., Moilanen, A.J., Vesk, P.A., Bennett, A.F., Nally, R.M., 2009. Where and when to revegetate a quantitative method for scheduling landscape reconstruction. Ecological Applications 19, 817–828.
Wiz, M.S., Hijmans, R.J., Li, J., Peterson, A.T., Graham, C.H., Guisan, A., NCEAS predicting species distribution working group, 2008. Effects of sample size on the performance of species distribution models. Diversity and Distribution 14,763-773.
Yousefi, S., Saeedi, H., Behfar, M., Fallahi, R., Izadian, M., 2015. Atlas of Amphibians of Iran. Department of Environment of Iran.
Ziaei, H., 2008. A field guide to mammals of Iran, 2nd edition. Wildlife Center Publication, Iran.