مدل پیش‌بینی رضایتمندی شهروندان از بوستان‌های شهری با استفاده از شبکه عصبی مصنوعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی‌ارشد ارزیابی محیط‌زیست، دانشکده محیط‌زیست، کرج

2 هیات علمی گروه محیط‌زیست طبیعی و تنوع زیستی، دانشکده محیط‌زیست، کرج

3 هیات علمی گروه محیط‌زیست، دانشکده منابع‌طبیعی، دانشگاه تهران

چکیده

یکی از مهم‌ترین عناصر شهرها، بوستان‌ها و فضاهای سبز شهری‌ هستند. نوع طراحی و عملکرد بوستان‌های شهری باید در راستای ضروریات زندگی شهری و در پاسخگویی به نیاز شهروندان باشد چرا که این امر می‌تواند در جهت ایجاد محیط زیست سالم و با ارزش شهری نیز به کار گرفته شود. هدف از انجام این پژوهش مدل‌سازی ارزیابی رضایتمندی بازدیدکنندگان از بوستان‌های شهری با استفاده از شبکه عصبی مصنوعی است. در انجام این پژوهش به منظور پردازش داده‌ها با ابزار هوشمند شبکه عصبی، از شبکه پرسپترون چند لایه استفاده شد. ابتدا 103 بوستان شهری در کرج و تهران انتخاب گردید و اطلاعات مربوط به متغیرهای منطقه‌ای، خدماتی و زیبایی‌شناختی در کلیه بوستان‌ها جمع‌آوری گردید. سپس اطلاعات جمع‌آوری شده به عنوان ورودی شبکه و نتایج حاصل از ارزیابی سطح رضایتمندی به عنوان خروجی شبکه در نظر گرفته شد. مقدار ضریب تعیین (R2) در این پژوهش 72/0 بدست آمد که نشان دهنده قابلیت مناسب شبکه عصبی مصنوعی در مدل‌سازی رضایتمندی از بوستان‌های شهری است. نتایج حاصل از آنالیز حساسیت نشان داد متغیرهای کیفیت منظر، تعداد زمین‌های ورزشی، مراکز فروش مواد غذایی، باربیکیو دارای بیشترین اثرگذاری بر روی رضایتمندی از بوستان‌های شهری بوده‌اند. لذا در برنامه‌ریزی و مدیریت اماکن عمومی همچون فضاهای سبز شهری، توجه به درک کاربران از محیط باید در الویت قرار گیرد.

کلیدواژه‌ها

عنوان مقاله [English]

Prediction model of citizens' satisfaction in urban parks using artificial neural network

نویسندگان [English]

  • reyhaneh khaleghpanah 1
  • Ali Jahani 2
  • Nematolah Khorasani 3
  • hamid goshtasb 2

1 Msc student of Natural Resources - and Environmental Sciences Department, College of Environment, Karaj

2 Faculty member of Natural Environment and Biodiversity Department, College of Environment, Karaj

3 Faculty member of Environment Department, College of Natural Resources, University of Tehran

چکیده [English]

Parks and green spaces are one of the most important elements of cities. The design and function of urban parks should be in line with the requirements of urban life and in response to the needs of citizens, as this can be used to create a healthy urban environment. The purpose of this research is to model the satisfaction of urban parks visitors using the artificial neural network. In this study, a multi-layer perceptron network was used to process the data with the intelligent neural network tool. First, 103 urban parks were selected in Karaj and Tehran, and information about regional, service and aesthetic variables was collected in all parks. Then, the collected data was considered as network input and the results of satisfaction level assessment as network output. The value of determination coefficient (R2) in this study was 0.72 which indicates the suitability of artificial neural network for satisfaction modeling in urban parks. The results of sensitivity analysis showed that variables of landscape quality, number of sports fields, food centers, and barbeque have had the most impact on satisfaction of urban parks. Therefore, in planning and managing public places such as urban green spaces, consideration of users' perceptions of the environment should be highlighted.

کلیدواژه‌ها [English]

  • Satisfaction
  • urban parks
  • Artificial Neural Network
  • Sensitivity analysis
Adibi, A.A., Menam, A.R., Ghazizadeh, N., 2005. The position of water and fountain in urban parks. Fine arts journal 22, 73-82 (in Persian).
Aghajani, H., Marvie Mohadjer, M.R., Jahani, A., Asef, M.R., Shirvany, A. and Azaryan, M., 2014. Investigation of affective habitat factors affecting on abundance of wood macrofungi and sensitivity analysis using the artificial neural network. Iranian Journal of Forest and Poplar Research, 21(4): 9-19 (In Persian).
Ahangari, Sh., Mousazadeh, Ch., Mohammadi, R., 2013. Citizens satisfaction indexes prioritization in urban parks and green spaces. Geography and environment studies 2(7), 7-20 (in Persian).
Azizi Jalilian, M., Danehkar, A., 2011. Determination and Analysis of the Standard Level of Key Indicators for the Use of Urban Parks (Case Study: Urban Parks in Karaj). Fine Arts, Architecture and Urbanism 17(2), 75-85 (in Persian).
Bao, Zh., Sun, Zh., Chen, B., Zhang, H., 2013. Landscape perception and recreation needs in Urban green space in Fuyang, Hangzhou, China, Urban Forestry & Urban Greening 12, 44-52.
Claveria, O., Torra, S., 2014. Forecasting tourism demand to Catalonia: Neural networks vs. time series models. Economic Modelling 36, 220-228.
Daniel, T.C., 2001. Whither scenic beauty? Visual landscape quality assessment in the 21st century. Landscape Urban Plan. 54, 267–281.
Fathi, S., Razavi, M.H., 2015. Describing how welcoming the citizens of amusement –Sporting parks, International Journal of Sport Studies 5 (1), 87-96.
Jahani, A., 2016. Modeling of forest canopy density confusion in environmental assessment using artificial neural network. Iranian Journal of Forest and Poplar Research 24(2), 310-322 (in Persian).
Jahani, A., 2017a. Sycamore failure hazard risk modeling in urban green space. Journal of spatial analysis environmental hazards, 3(4), 35-48 (in Persian).
Jahani, A., 2017b. Aesthetic quality evaluation modeling of forest landscape using artificial neural network. J. of Wood & Forest Science and Technology, 24 (3): 17-33 (in Persian).
Jahani, A., 2019. Sycamore failure hazard classification model (SFHCM): An environmental decision support system (EDSS) in urban green spaces. International Journal of Environmental Science and Technology, 16, 955–964.
Jahani, A., Feghhi, J., Makhdoum,  M., Omid, M., 2016. Optimized forest degradation model (OFDM): an environmental decision support system for environmental impact assessment using an artificial neural network. Journal of Environmental Planning and Management 59(2), 222-244.
Jahani, A., Mohammadi Fazel, A., 2017. Aesthetic quality modeling of landscape in urban green space using artificial neural network, Journal of Natural Environment 69(4), 951-963 (in Persian).
Kim, S., Seo, W., 2015. Artificial Neural Network ensemble modeling with conjunctive data clustering for water quality prediction in rivers. Journal of Hydro-environment Research 9, 325-339.
Menhaj, M.B., 2001. Artificial networks fundamental. Amir kabir press. Tehran, 502pp (in Persian).
Mohammadi, J., Rakhshaninasab, H.R., 2010. Behavioral Analysis of Quantitative and Qualitative Factors Affecting the Attraction of Citizens to Urban Parks in Isfahan. Geographical Space 34:28-48 (in Persian).
Montazeralhojjat, M., Sharifnejad, M., 2015. Factors Affecting Users' Perceptions of the Quality of the Environment of the Public Fields (Case Study: Parks in Yazd). Urban studies 20, 17-28 (in Persian).
Muratet, A., Pellegrini, P., Dufour, A., Arrif, T., 2015. Perception and Knowledge of plant diversity among urban park users. Landscape and Urban Planning 137, 95-106.
Rezazadeh, S., Jahani, A., Makhdoum, M., Goshtasb Meigooni, H. 2017. Evaluation of the Strategic Factors of the Management of Protected Areas Using SWOT Analysis—Case Study: Bashgol Protected Area-Qazvin Province. Open Journal of Ecology, 7(1): 55-68.
Saeidi, S., Salman Mahini, A.R., 2015. Aesthetics values modeling of landscape using artificial neural network. Environmental researches 1: 3-10 (in Persian).
Shnahan, D.F., Lin, B.B., Gaston, K.J., Bush, R., Fuller, R.A., 2015. What is The role of trees and remnant vegetation in attracting people to urban parks?. Landscape Ecology 30, 153-165.
Sobhani, P., Goshtasb, H., Nezami, B., Jahani, A. 2018. Evaluation of Promoting Conservation Hunting Areas (Case Study:Hamedan Alvand No-Hunting Area). Environment sciences and technology, 20(3): 143-157 (in Persian).
Soleimani, M., Mohammadnejad, M., Khodadadi, P., Ataei, V., 2014. Satisfaction survey of tourists from Mahabad city with emphasis on tourism. Economy and urban management 10, 139-155 (in Persian).
Wang, D., Brown, G., Liu, Y., 2015. The Physical and non-physical factors that influence perceived access to urban parks. Landscape and Urban Planning 133, 53-66.
Zhang, H., Chen, B., Sun, Z., Bao, Z., 2013. Landscape perception and recreation needs in Urban green space in Fuyang, Hangzhou, China. Urban Forestry & Urban Greening 12, 44-52.