پراکنش مکانی میکروپلاستیک‌ها در رسوبات سطحی دریاچة مخزن سد زاینده‌رود

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه محیط‌ زیست، دانشکدة منابع طبیعی، دانشگاه صنعتی اصفهان، اصفهان، ایران.

10.22059/jne.2025.390800.2774

چکیده

مطالعة حاضر با هدف بررسی پراکنش مکانی میکروپلاستیک‌ها در رسوبات سطحی بستر مخزن سد زاینده‌رود به‌عنوان یکی از مهمترین منابع آب فلات مرکزی ایران انجام گرفت. بدین‌منظور نمونه‌برداری از رسوبات سطحی 20 ایستگاه در طول دریاچة مخزن سد زاینده‌رود با استفاده از گرب اکمن انجام شد. جداسازی ذرات میکروپلاستیک از نظر خصوصیات فیزیکی شامل شکل، رنگ و اندازه انجام شد و نوع پلیمرها با طیف‌سنجی مادون قرمز فوریه (FT-IR) تعیین گردید. میانگین تراکم میکروپلاستیک‌ها در رسوبات سطحی مخزن سد زاینده‌رود (133/8±223/3ذره در کیلوگرم رسوب خشک) در مقایسه با سایر مناطق جهان، در حد متوسط قرار دارد. تحلیل الگوی توزیع مکانی تراکم میکروپلاستیک‌ها نشان داد که تراکم این ذرات از دیوارة سد به‌سمت ورودی دریاچه به‌صورت تدریجی افزایش می‌یابد. ذرات شناسایی‌شده تنوع زیادی از نظر رنگ، شکل و اندازه داشتند. بیشترین فراوانی به ذرات رشته‌ای (32/1±65/3%) و بی‌شکل (30/3±28/1%) اختصاص یافت. رنگ‌های غالب شامل قرمز (29/4±40/4%)، زرد (26/8±38/4%) و آبی (14/9±13/7%) بودند و اندازة ذرات عمدتاً درمحدودة 125 تا 500 میکرون قرار داشت. پلی‌پروپیلن (PP) بیشترین سهم را در میان پلیمرهای شناسایی‌شده داشت و پس از آن پلی‌وینیل‌کلراید (PVC) و پلی‌اتیلن (PE) در رتبه‌های بعدی قرار دارند. علاوه بر این، پلی‌استرهای آروماتیک مانند پلی‌بوتیلن‌ترفتالات (PBT) و پلی‌اتیلن‌نفتالات (PEN) نیز در برخی نمونه‌ها شناسایی شدند. به‌طور کلی مخزن سد به‌عنوان عاملی مؤثر در ترسیب میکروپلاستیک‌ها در بخش‌های بالادست رودخانة زاینده‌رود عمل کرده است. با این حال، اتخاذ و اجرای راهبردهای مدیریتی به‌منظور کاهش انتشار پلاستیک‌ها در مناطق بالادست حوضه ضروری به‌نظر می‌رسد.

کلیدواژه‌ها

عنوان مقاله [English]

Spatial distribution of microplastics in surface sediments of the Zayandehroud Dam reservoir

نویسندگان [English]

  • Ali Homayoun
  • Mohammad Nemati Varnosfaderany
  • Mahtab Haghighatnia

Department of Natural Resources, Isfahan University of Technology, Iran.

چکیده [English]

The present study was conducted with the aim of investigating the spatial distribution of microplastics in surface sediments of the Zayandehroud Dam reservoir, as one of the most important sources of water in the Central Plateau of Iran. For this purpose, surface sediment sampling was carried out at 20 stations along the Zayandehroud Dam reservoir using Ekman grab. Microplastic particles were separated based on their physical properties, including shape, color, and size, and the type of polymers was determined by Fourier transform infrared spectroscopy (FT-IR). The average concentration of microplastics in the surface sediments of the Zayandehroud Dam reservoir (223.3±133.8 particles per kg of dry sediment) is medium compared to other regions of the world. The spatial distribution analysis of the microplastics density showed generally the pattern of increasing gradually from the dam wall towards the entrance of the lake. The detected particles had a great variety in terms of color, shape and size. The highest frequency was assigned to filamentous (65.3±32.1%) and amorphous particles (28.1±30.3%). The dominant colors included red (40.4%±29.4), yellow (38.4%±26.8), and blue (13.7%±14.9). The particle size was mainly in the range of 125 to 500 microns. The polypropylene (PP) was dominant among the identified polymers, followed by polyvinyl chloride (PVC) and polyethylene (PE). In addition, aromatic polyesters such as polybutylene terephthalate (PBT) and polyethylene naphthalate (PEN) were also detected in some samples. In general, the dam has acted as an effective factor in the deposition of microplastics in the upstream parts of Zayandehroud River. However, it seems necessary to adopt and implement management strategies in order to reduce the release of plastics in the upstream areas of the basin.

کلیدواژه‌ها [English]

  • Microplastic
  • Polypropylene
  • Surface sediment
  • Zayandehroud Dam
Abbasi, S., Turner, A., 2022. Sources, concentrations, distributions, fluxes and fate of microplastics in a hypersaline lake: Maharloo, south-west Iran. Science of the Total Environment 823, 153721.
Alimba, C.G., Faggio, C., 2019. Microplastics in the marine environment: Current trends in environmental pollution and mechanisms of toxicological profile. Environmental Toxicology and Pharmacology 68, 61-74.
Álvarez-Hernández, C., Cairós, C., López-Darias, J., Mazzetti, E., Hernández-Sánchez, C., González-Sálamo, J., Hernández-Borges, J., 2019. Microplastic debris in beaches of Tenerife (Canary Islands, Spain). Marine Pollution Bulletin 146, 26-32.
Andrady, A.L., 2011. Microplastics in the marine environment. Marine Pollution Bulletin 62(8), 1596-1605.
Behmanesh, M., Chamani, A., Chavoshi, E., 2022. Occurrence, abundance and characteristics of microplastics in the sediments of the Zayandeh- Rud River. Environment and Interdisciplinary Development 7(76), 74-89. (In Persian)
Block, K., Benedik, L., Strumińska-Parulska, D., 2023. Advancing environmental monitoring: A comparative analysis of sequential radiochemical methods for precise alpha-particle spectrometry analysis of 241Am in soil and marine sediment samples. Marine Environmental Research 192, 106243.
Cózar, A., Echevarría, F., González-Gordillo, J.I., Irigoien, X., Úbeda, B., Hernández-León, S., Duarte, C.M., 2014. Plastic debris in the open ocean. Proceedings of the National Academy of Sciences 111(28), 10239-10244.
Da Costa, J.P., Santos, P.S.M., Duarte, A.C., Rocha-Santos, T., 2016. (Nano) plastics in the environment - Sources, fates and effects. Science of the Total Environment 566-567, 15-26.
DaryaTarsim Consulting Engineers. 2011. Technical report on hydrographic operations and mapping of Zayandeh-Rud Dam (Vol. 1). National Cartographic Center of Iran. (In Persian)
Eerkes-Medrano, D., Thompson, R. C., & Aldridge, D. C., 2015. Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritization of research needs. Water Research, 75, 63-82.
Elert, A. M., Becker, R., Duemichen, E., Eisentraut, P., Falkenhagen, J., Sturm, H., Braun, U., 2017. Comparison of different methods for MP detection: what can we learn from them, and why asking the right question before measurements matters?. Environmental Pollution 231, 1256-1264.
Fang, Q., Niu, S., Yu, J., 2021. Characterizing microplastic pollution in sediments from urban water systems using the diversity index. Journal of Cleaner Production 318, 128537.
Gao, D., Li, X.Y., Liu, H., 2020. Source, occurrence, migration and potential environmental risk of microplastics in sewage sludge and during sludge amendment to soil. Science of the Total Environment, 742, 140355.
Haghighatnia, M., 2023. Sedimentation rate and sediment zonation of the Zayandehrud Dam Lake based on geochemical indices of sediment cores. Mater thesis of environmental pollution. Department of Natural Resources. Isfahan University of Technology. pp. 114. (In Persian)
Haque, A., Holsen, T.M., Baki, A.B., 2024. Distribution and risk assessment of microplastic pollution in a rural river system near a wastewater treatment plant, hydro-dam, and river confluence. Scientific Reports 14(1), 6006.
Käppler, A., Fischer, D., Oberbeckmann, S., Schernewski, G., Labrenz, M., Eichhorn, K.J., Voit, B., 2016. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Analytical and Bioanalytical Chemistry 408(29), 8377-8391.
Lambert, S. and Wagner, M., 2018. Microplastics are contaminants of emerging concern in freshwater environments: an overview. Freshwater microplastics: emerging environmental contaminants. Springer, pp.1-23.
Lee, H., Kim, S., Sin, A., Kim, G., Khan, S., Nadagouda, M. N., Sahle-Demessie, E., Han, C. 2023. Pretreatment methods for monitoring microplastics in soil and freshwater sediment samples: A comprehensive review. Science of the Total Environment 871, 161718.
Mani, T., Hauk, A., Walter, U., Burkhardt-Holm, P., 2015. Microplastics profile along the Rhine River. Scientific Reports 5(1), 17988.
Mushtak, F., Prakash, J., & Katoch, S.S., 2024. Microplastics in complex soil matrix: Recovery, identification and removal using micro nano techniques. Micro and Nano Engineering 100237.
Piperagkas, O., Papageorgiou, N., Karakassis, I., 2019. Qualitative and quantitative assessment of microplastics in three sandy Mediterranean beaches, including different methodological approaches. Estuarine, Coastal and Shelf Science 219, 169-175.
Pojar, I., Dobre, O., Lazăr, C., Baboș, T., Ristea, O., Constantin, A., Cristoiu, N., 2024. Microplastic Evaluation in Water and Sediments of a Dam Reservoir–Riverine System in the Eastern Carpathians, Romania. Sustainability 16(11), 4541.
Prata, J.C., da Costa, J.P., Duarte, A.C., Rocha-Santos, T., 2019. Methods for sampling and detection of microplastics in water and sediment: A critical review. Trends in Analytical Chemistry 110, 150-159.
Prume, J. A., Gorka, F., Löder, M.G.J., 2021. From sieve to microscope: An efficient technique for sample transfer in the process of microplastics’ quantification. Methods X 8, 101341.
Rasta, M., Sattari, M., Shokrollahzadeh Taleshi, M., Imanpour Namin, J., 2020. Microplastic pollutions in the Anzali Wetland sediments, Southwest Caspian Sea (Guilan Province, Iran). Iranian Scientific Fisheries Journal 29(4), 121-133. (In Persian)
 Rani, M., Ducoli, S., Depero, L.E., Prica, M., Tubi, A., 2023. Complex Environmental Matrices. MDPI, Molecules 28, 1-37.
Rico, A., Redondo-Hasselerharm, P.E., Schell, T., Sanders, C.J., Bernardino, A.F., 2024. Microplastic burial potential and ecological risks in mangrove forests of the Amazon River delta. Science of The Total Environment 957, 177666.
Rocha-Santos, T.A.P., Duarte, A.C., 2017. Comprehensive Analytical Chemistry: Characterization and Analysis of Microplastics. Elsevier.
Schrank, I., Löder, M.G., Imhof, H.K., Moses, S.R., Heß, M., Schwaiger, J., Laforsch, C., 2022. Riverine microplastic contamination in southwest Germany: A large-scale survey. Frontiers in Earth Science 10, 794250.
Van Cauwenberghe, L., Devriese, L., Galgani, F., Robbens, J., Janssen, C.R., 2015. Microplastics in sediments: a review of techniques, occurrence and effects. Marine Environmental Research 111, 5-17.
Vianello, A., Boldrin, A., Guerriero, P., Moschino, V., Rella, R., Sturaro, A., Da Ros, L., 2013. Microplastic particles in sediments of Lagoon of Venice, Italy: First observations on occurrence, spatial patterns and identification. Estuarine, Coastal and Shelf Science 130, 54-61.
Vural, T., Çetinkaya, S., Yeğen, V., Şapcıoğlu, S., Gündoğdu, S., 2025. Protocol for extraction and analysis of microplastics in freshwater, sediment, and fish samples. STAR Protocols 6(3), 104057.
Willis, K.A., Eriksen, R., Wilcox, C., Hardesty, B.D., 2017. Microplastic distribution at different sediment depths in an urban estuary. Frontiers in Marine Science 4, 419.
Yang, L., Zhang, Y., Kang, S., Wang, Z., Wu, C., 2021. Microplastics in freshwater sediment: A review on methods , occurrence, and sources. Science of the Total Environment, 754, 141948.
Yeganefar, M., Shakeri, A., Mehr, M.R., Lahijani, O., 2020. Investigating abundance and characteristics of microplastics as emerging pollutants in sediments of Taleqan dam and upstream river in Alborz province. Iranian Journal of Health and Environment 13(1), 65-76. (In Persian)
Zar, J.H., 1999. Biostatistical analysis, 4 nd edition, Upper Saddle River, NJ: Prentice Hall
Zhang, K., Gong, W., Lv, J., Xiong, X., Wu, C., 2015. Accumulation of floating microplastics behind the Three Gorges Dam. Environmental Pollution 204, 117-123.