تحلیل تفاضلی اثر روند بارشی بر امنیت آبی در اقلیم‌های ناهمگون ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه جغرافیای طبیعی، دانشکدة جغرافیا، دانشگاه تهران، تهران، ایران.

2 گروه اقلیم‌شناسی، دانشکدة علوم جغرافیایی، دانشگاه خوارزمی تهران، تهران، ایران.

3 گروه جغرافیای طبیعی، دانشکدة جغرافیا و برنامه‌ریزی محیطی، دانشگاه سیستان و بلوچستان، زاهدان، ایران.

4 گروه سنجش از دور و سیستم‌های اطلاعات جغرافیایی، دانشکدة ادبیات، دانشگاه فردوسی، مشهد، ایران.

10.22059/jne.2025.402103.2839

چکیده

امنیت آبی در مناطق خشک و نیمه‌خشک با اقلیم‌های ناهمگون مانند ایران، یک چالش چندبعدی است. با این حال، ارزیابی‌های کلان اغلب پاسخ‌های متفاوت مناطق اقلیمی به تغییرات هیدرولوژیک را نادیده می‌گیرند. این مطالعه با هدف پر کردن این خلأ، به تحلیل تفاضلی اثر روند بارش طی دورة ۱۹۷۰-۲۰۲۱ بر شاخص امنیت آبی (Aqueduct 4.0) در پهنه‌های اقلیمی متمایز ایران براساس طبقه‌بندی کوپن-گایگر می‌پردازد. بنابراین، پس از آشکارسازی روندهای بارش با آزمون من-کندال، از مدل تحلیل کوواریانس (ANCOVA) برای آزمون اثر تعدیل‌گر اقلیم بر رابطة میان این دو متغیر استفاده شد. نتایج، یک اثر تعاملی آماری معنی‌دار بین روند بارش و نوع اقلیم را آشکار ساخت (0/03) (0/03≈p)، که فرضیة اصلی تحقیق مبنی بر پاسخ ناهمگون امنیت آبی را تأیید می‌کند. در ادامه برای کمی‌سازی این تفاوت، یک شاخص حساسیت محاسبه گردید که نشان داد اقلیم‌های مدیترانه‌ای با تابستان گرم (Csa)، نیمه‌خشک گرم (BSh) و بیابانی گرم (BWh) با ثبت مقادیر حساسیت به‌ترتیب ۳۹۸، ۱۹۰ و ۱۸۵، آسیب‌پذیرترین مناطق در برابر نوسانات بارش هستند. در مقابل، سایر اقلیم‌ها حساسیت بسیار پایینی نشان دادند که حاکی از تاب‌آوری بیشتر یا غلبة عوامل دیگری چون مدیریت انسانی بر سیستم است. این یافته‌ها بر ناکارآمدی سیاست‌های یکپارچه تأکید کرده و ضرورت تدوین راهبردهای مدیریت منابع آب منطقه‌ای و مبتنی بر شواهد اقلیمی را برای تضمین امنیت آبی پایدار در ایران برجسته می‌سازد.

کلیدواژه‌ها

عنوان مقاله [English]

Differential impact of precipitation trends on water security across Iran's heterogeneous climatic zones

نویسندگان [English]

  • Faeze Shoja 1
  • Ali Reza Karbalaee Doree 2
  • Saeideh Ashrafi 3
  • Muhammad Kamangar 4

1 Department of Physical Geography, Faculty of Geography, University of Tehran, Teheran, Iran.

2 Department of Climatology Faculty of Geographical Sciences, Kharazmi University, Tehran, Iran.

3 Department of Physical Geography, Faculty of Geography and Environmental Planning, University of Sistan and Baluchestan, Zahedan, Iran.

4 Department Remote Sensing and GIS, Faculty of Literature, Ferdowsi University, Mashhad, Iran.

چکیده [English]

In the context of arid and semi-arid regions characterised by pronounced climatic heterogeneity, such as Iran, ensuring water security is inherently complex. However, monolithic, national-scale assessments frequently fail to capture the differential responses of distinct climatic zones to hydrological changes. This study addresses this gap by conducting a differential analysis of the impact of precipitation trends from 1970 to 2021 on the Aqueduct 4.0 water security index across Iran's diverse climatic zones, as defined by the Köppen-Geiger classification. Following the detection of precipitation trends using the Mann-Kendall test, an Analysis of Covariance (ANCOVA) model was employed to test the moderating effect of climate type on the relationship between these two variables. The findings indicated a statistically significant interaction effect between precipitation trend and climate type (p ≈ 0.03), thereby substantiating the central hypothesis of a heterogeneous water security response. In order to quantify the differential impact, a sensitivity index was calculated, which identified the Mediterranean (Csa), hot semi-arid (BSh), and hot desert (BWh) climates as the most vulnerable to precipitation variability, with sensitivity indices of 398, 190, and 185, respectively. Conversely, other climatic zones demonstrated minimal sensitivity, indicating enhanced resilience or the predominance of alternative factors, such as anthropogenic pressures, on the system. These findings emphasise the limitations of a universalised approach and underscore the necessity of formulating region-specific, climate-informed water management strategies to ensure sustainable water security in Iran.

کلیدواژه‌ها [English]

  • Adaptive water management
  • Climate change
  • Köppen-Geiger classification
  • Water security
  • Water vulnerability
AghaKouchak, A., Mirchi, A., Madani, K., Di Baldassarre, G., Nazemi, A., Alborzi, A., Wanders, N., 2021. Anthropogenic drought: Definition, challenges, and opportunities. Reviews of Geophysics 59, e2019RG000683.
Alizadeh-Choobari, O., Najafi, M.S., 2017. Trends and changes in air temperature and precipitation over different regions of Iran. Journal of the Earth and Space Physics 43(3), 569-584.
Alkhawaga, A., Zeidan, B., Elshemy, M., 2022. Climate change impacts on water security elements of Kafr El-Sheikh governorate, Egypt. Agricultural Water Management 259(), 107217.
Asakereh, H., 2008. Kriging Application in Climatic Element Interpolation A Case Study: Iran Precipitation in 1996.12.16. Geography and Development 6(12), 25-42.
Asakereh, H., Masoodian, S.A., Tarkarani, F., 2021. Long term trend detection of annual precipitation over Iran in relation with changes in frequency of daily extremes precipitation. Journal of Geography and Environmental Hazards 9(4), 123-143.
Azadi, Y., Yaghoubi, J., Gholizadeh, H., Gholamrezai, S., Rahimi-Feyzabad, F., 2025. Social barriers to water scarcity adaptation: A grounded theory exploration in arid and semi-arid regions. Agricultural Water Management, 309, 109338.
Azar, A., Momeni, M., 2005. Statistics and Its Application in Management (Vol. 2). Tehran: Samt Publications.
Azizi, A., Shojaei, J., Mahmoudi, M.J., 2024. Comparative Study of Iran's Water Security by Using Water Security Index. (e208722). Iranian Population Studies e208722.
Ballarin, A.S., Sousa Mota Uchoa, J.G., dos Santos, M.S., Almagro, A., Miranda, I.P., da Silva, P.G.C., Oliveira, P.T., 2023. Brazilian water security threatened by climate change and human behavior. Water Resources Research 59(7), e2023WR034914.
Eekhout, J.P., Hunink, J.E., Terink, W., de Vente, J., 2018. Why increased extreme precipitation under climate change negatively affects water security. Hydrology and Earth System Sciences 22(11), 5935-5946.
Gharib, A.A., Blumberg, J., Manning, D.T., Goemans, C., Arabi, M., 2023. Assessment of vulnerability to water shortage in semi-arid river basins: The value of demand reduction and storage capacity. Science of the Total Environment 871, 161964.
Grey, D., Sadoff, C.W., 2007. Sink or swim? Water security for growth and development. Water Policy 9(6), 545-571.
Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Flörke, M., Hanasaki, N., Wisser, D., 2014. Global water resources affected by human interventions and climate change. Proceedings of the National Academy of Sciences 111(9), 3251-3256.
Hedjazizadeh, Z., Halabian, A. H., Karbalaee, A., Toulabi, M., 2020. Detection of extreme values variations of precipitation over Iran. Journal of Natural Environmental Hazards, 9(23), 135-150.
Heydari, N., 2019. Visions and Approaches for Adapting to Climate Change, from Agricultural Water Management and Food Security Aspects. Water Management in Agriculture 6(1), 23-36.
Heydarzadeh, M., Ghashghaeizadeh, N., Kamali, H., Jamshidi, S., 2025. Effects of precipitation changes and human activities on surface flow in an arid Region of Southern Iran. Groundwater for Sustainable Development 29, 101434.
IPCC., 2021: Climate change 2021-the physical science basis. Interaction 49(4), 44-45.
Kamali, A.M., Kazemiha, M., Keshtkarhesamabadi, B., Daneshvari, M., Zarifkar, A., Chakrabarti, P., Nami, M., 2021. Simultaneous transcranial and transcutaneous spinal direct current stimulation to enhance athletic performance outcome in experienced boxers. Scientific Reports 11(1),19722.
Kendall, M.G., 1945. On the analysis of oscillatory time-series. Journal of the Royal Statistical Society 108(1/2), 93-141.
Kendall, M.G., 1975. Rank Correlation Methods 4th edn (London: Charles Griffin).
Kendall, M.G., 1975. Rank correlation methods. Griffin, London. Journal of Economics 13, 245-259.
Kumar, P., 2015, Hydrocomplexity: Addressing water security and emergent environmental risks, Water Resources Research 51, 5827-5838.
Li, C., Zhang, H., Gong, X., Wei, X., Yang, J., 2019. Precipitation trends and alteration in Wei River Basin: Implication for water resources management in the transitional zone between Plain and Loess Plateau, China. Water 11(11), 2407.
Liu, J., Fu, Z., Liu, W., 2023. Impacts of precipitation variations on agricultural water scarcity under historical and future climate change. Journal of Hydrology 617, 128999.
Madani, K., 2014. Water management in Iran: what is causing the looming crisis?. Journal of Environmental Studies and Sciences 4(4), 315-328.
Maja, M.M., Ayano, S.F., 2021. The impact of population growth on natural resources and farmers’ capacity to adapt to climate change in low-income countries. Earth Systems and Environment 5(2), 271-283.
Maleki, N., Shakeri bostanabad, R., Salehi Komroudi, M., Seiedabadi, S., 2021. Investigating the Status of the Combined Water Security Index of Iranian Provinces in the Period of 2012-2017: Application of Multi-Criteria Analysis Methods. Journal of Water and Sustainable Development 8(2), 21-32.
Mann, H.B., 1945. Nonparametric tests against trend. Econometrica: Journal of the Econometric Society 13, 245-259.
Masoodian, S.A., Rayatpishe, F., Keykhosravi Kiani, M.S., 2016. Introducing the TRMM and Asfezariprecipitation database: A comparative study. (e33560). Iranian Journal of Geophysics 8(4), e33560
Masoudian S A., 2008. On precipitation mapping in Iran, Journal of Humanities 30(2), 69-80
Mdemu, M.V., 2021. Community's vulnerability to drought-driven water scarcity and food insecurity in central and northern semi-arid areas of Tanzania. Frontiers in Climate 3, 737655.
Mishra, B. K., Kumar, P., Saraswat, C., Chakraborty, S., Gautam, A., 2021. Water security in a changing environment: Concept, challenges and solutions. Water 13(4), 490.
Morante-Carballo, F., Montalván-Burbano, N., Quiñonez-Barzola, X., Jaya-Montalvo, M., Carrión-Mero, P., 2022. What do we know about water scarcity in semi-arid zones? A global analysis and research trends. Water 14(17), 2685.
Mozafari, G.A., Shafie, S., 2017. temporal-spatial analysis of rainfall days frequency trend of western iran regions. Geographical Journal of Territory 13(52), 77-94.
Namroodi, M., Hamidianpour, M., Poodineh, M., 2021. Spatio-temporal analysis of changes in heat and cold waves across Iran over the statistical period 1966–2018. Arabian Journal of Geosciences 14(10), 857.
Paudel, S., Kumar, P., Dasgupta, R., Johnson, B. A., Avtar, R., Shaw, R., Kanbara, S., 2021. Nexus between water security framework and public health: A comprehensive scientific review. Water 13(10), 1365.
Qin, K., Liu, J., Yan, L., Huang, H., 2019. Integrating ecosystem services flows into water security simulations in water scarce areas: Present and future. Science of the Total Environment 670, 1037-1048.
Rawat, A., Kumar, D., Khati, B. S., 2024. A review on climate change impacts, models, and its consequences on different sectors: a systematic approach. Journal of Water and Climate Change, 15(1), 104-12
Salami, H., Taheri Rekandeh, O., 2019. Assessment of Water Security Status in the Provinces of Iran. Journal of Agricultural Economics and Development (Agricultural Sciences and Industries) 33(1), 75-94.
Salemi Sarmast, S., Zahraie, B., 2021. Assessment of Water Security in Iran at Provincial Level Using a Hybrid Index. Water and Irrigation Management,11(3), 617-632.
Talebi, M., 2023. Water crisis in iran and its security consequences. Journal of Hydraulic Structures 8(4), 17-28.
Tang, Q., Liu, X., Zhou, Y., Wang, P., Li, Z., Hao, Z., Luo, L., 2022. Climate change and water security in the northern slope of the Tianshan Mountains. Geography and Sustainability 3(3), 246-257.
Torabi Poudeh, H., Izadjoo, F., Hamezade, P., 2018. The trend changing analysis of total and effective rainfall in ‎Iran. Iranian Water Researches Journal 12(4), 1-10.
Van Loon, A.F., Van Lanen, H.A., 2013. Making the distinction between water scarcity and drought using an observation‐modeling framework. Water Resources Research 49(3), 1483-1502.
Wheater, H.S., Gober, P., 2015. Water security and the science agenda. Water Resources Research 51, 5406-5424,
World Resources Institute (WRI). 2023. Aqueduct Water Risk Atlas. Washington, DC: World Resources Institute
Yue, S., Pilon, P., Cavadias, G., 2002. Power of the Mann–Kendall and Spearman's rho tests for detecting monotonic trends in hydrological series. Journal of Hydrology 259(1-4), 254-271
Zarrin, A., Dadashi-Roudbari, A.A., 2023. Investigating the impacts of climate change on water security in Iran.
Zhou, S., Williams, A. P., Lintner, B. R., Findell, K. L., Keenan, T. F., Zhang, Y., Gentine, P., 2022. Diminishing seasonality of subtropical water availability in a warmer world dominated by soil moisture–atmosphere feedbacks. Nature Communications 13(1), 5756.