بررسی توزیع مکانی غلظت فلزات سنگین در آب‌های زیرسطحی مورد استفاده در اراضی تحقیقاتی پژوهشگاه زابل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه اکوسیستم‌های طبیعی، پژوهشکدۀ تالاب بین‌المللی هامون، پژوهشگاه زابل، زابل، ایران.

2 گروه علوم آبزیان، پژوهشکدۀ تالاب بین‌المللی هامون، پژوهشگاه زابل، زابل، ایران.

10.22059/jne.2025.405899.2861

چکیده

در پژوهش حاضر، به‌منظور ارزیابی کیفی منابع آب مورد استفاده در اراضی تحقیقاتی پژوهشگاه زابل و خطرات بالقوۀ محیط‌زیستی و بهداشتی، غلظت فلزات سنگین جیوه (Hg)، سرب (Pb)، آرسنیک (As)، کروم (Cr)، نیکل (Ni)، کادمیم (Cd)، آهن (Fe) و مس (Cu) به‌همراه تأثیر احتمالی پارامترهای فیزیکی و شیمیایی آب‌های زیرسطحی (چاه‌ها و زهکش‌های پژوهشگاه) بررسی گردید. جهت انجام پژوهش، نمونه‌های آب در دو فصل زمستان 1402 (بهمن ماه) و تابستان 1403 (مرداد ماه) از ۸ ایستگاه مختلف و با ۳ تکرار در هر دورۀ نمونه‌برداری جمع‌آوری شد. شاخص‌های کیفی و Poseidon Index(PoS) محاسبه شده و جهت ترسیم نقشه‌های پراکنش، از روش درون‌یابی وزنی معکوس فاصله(IDW)استفاده گردید. با توجه به آنکه غلظت سرب و جیوه کمتر از حد تشخیص بود، این دو عنصر ثبت نشدند. در فصل تابستان، غلظت آرسنیک، کروم، نیکل، کادمیم، آهن و مس به‌ترتیب 13/11–6/44، 83/76–18/36، 9/8–1/44، 6/3–1/31، 976/66–194 و 39/9–12/53میکروگرم در لیتر اندازه‌گیری شد. در زمستان نیز، دامنۀ غلظت آرسنیک 21/73–8/21، کروم 96/06–44/43، نیکل 11/86–3/34کادمیم 8/38–2/33، آهن 4893/33–1253/33و مس 91/9671–55/01میکروگرم در لیتر متغیر بود. نتایج حاصل نشان‌دهندۀ وجود تغییرات مکانی و فصلی معنی‌دار در غلظت فلزات سنگین بود. به گونه‌ای که اغلب عناصر در فصل زمستان مقادیر بالاتری داشتند. نقشه‌های مکانی ترسیم‌شده از پارامترهای کیفیت آب، نمایی جامع از الگوی پراکنش آنها در محدودۀ مطالعه، طی فصل‌های نمونه‌برداری فراهم آورد. به‌دلیل استفادۀ موقت این منابع آبی و تمرکز بر آبیاری درختان، در حال حاضر خطر محیط‌زیستی مشاهده نمی‌شود. درعین حال، نتایج مطالعه بر ضرورت پایش مستمر و به‌کارگیری راهبردهای مدیریتی مناسب به‌منظور تضمین بهره‌برداری ایمن و پایدار منابع آب در شرایط تنش آبی تأکید دارد.

کلیدواژه‌ها

عنوان مقاله [English]

Spatial distribution assessment of heavy metal concentrations in subsurface waters utilized within the research areas of Zabol research institute

نویسندگان [English]

  • Sahel Pakzad Toochaei 1
  • Roghaye Karami 1
  • Hashem Khandan Barani 2

1 Department of Natural Ecosystems, Hamoon International Wetland Research Institute, Research Institute of Zabol, Zabol, Sistan and Baluchestan, Iran.

2 Department of Aquatic Science, Hamoon International Wetland Research Institute, Research Institute of Zabol, Zabol, Sistan and Baluchestan, Iran.

چکیده [English]

In this study, we evaluated the water quality of sources used in the experimental fields of Zabol Research Institute, with a focus on potential environmental and health risks. The concentrations of heavy metals—including mercury (Hg), lead (Pb), arsenic (As), chromium (Cr), nickel (Ni), cadmium (Cd), iron (Fe), and copper (Cu) were measured, alongside key physicochemical parameters of groundwater from wells and drainage systems within the institute. Water samples were collected from eight stations during two seasons, February 2024 (winter) and August 2024 (summer), with three replicates per sampling event. To assess water quality, indices such as the Metal Index (MI) and Poseidon Index (PoS) were calculated, and the Inverse Distance Weighting (IDW) method was used to produce spatial distribution maps, highlighting the variation of heavy metal concentrations across the study area. Mercury and lead were below detection limits and therefore not recorded. The concentrations (µg/L) of arsenic, chromium, nickel, cadmium, iron, and copper were 6.44–13.11, 18.36–83.76, 1.44–9.8, 1.31–6.3, 194–976.66, and 12.53–39.9, in summer respectively. In winter, concentrations increased to 8.21–21.73 for arsenic, 44.43–96.06 for chromium, 3.34–11.86 for nickel, 2.33–8.83 for cadmium, 1253.33–4893.33 for iron, and 55.01–91.67 for copper. Results indicated significant spatial and seasonal variations, with most metals showing higher levels in winter. The spatial maps of water quality parameters provided an effective overview of their distribution across the study area in different seasons. Although no immediate environmental risk was detected, as these water sources are used temporarily and mainly for tree irrigation, the findings highlight the importance of regular monitoring and the implementation of proper management strategies to ensure the safe and sustainable use of water resources under conditions of scarcity.

کلیدواژه‌ها [English]

  • Groundwater
  • Heavy metals
  • Irrigation
  • Inverse Distance Weighting (IDW)
  • Water quality indices
Acosta, J.A., Jansen, B., Kalbitz, K., Faz, A., Martínez-Martínez, S., 2011. Salinity increases mobility of heavy metals in soils. Chemosphere 85(8), 1318-1324.
Amin, S., Farajoud, M.R., Shabani, A., 2011. Groundwater contamination by heavy metals in water resources of Shiraz. Iranian Agricultural Research 30(1-2), 21-32. (In Persian)
A'mi-Zadegan, A., Asrari, A., 2018. Investigation of heavy metal concentrations in drinking water wells of Jahrom County. Proceedings of the 1st National Conference on Safety, Health and Environment, Islamic Azad University, Meybod Branch. (In Persian)
Amjadian, H., Ardakani, S., 2022. Assessment of groundwater contamination with potentially toxic elements using MI and PoS indices (Case study: Sonqor). Journal of Environmental Health Engineering 10(2), 146-162. (In Persian)
An, J., Zha, X., Wang, H., Deng, L., Yang, Y., Wang, Y., Zhao, W., 2024. Analysis of influencing factors of heavy metals and non-point source pollution in typical areas of Tethys Himalayan tectonic domain. Water 16(2), 291.
APHA, American Public Health Association, American Water Works Association, Water Environment Federation. 2023. Standard methods for the examination of water and wastewater (24th ed.). APHA Press.
Ayers, R.S., Westcot, D.W. 1994. Water quality for agriculture (FAO Irrigation and Drainage Paper 29, Rev. 1). Rome, Italy: Food and Agriculture Organization 1, 74.
Belkhiri, A., Tiri, A., Mouni, L. 2020. Spatial distribution of groundwater quality using kriging and co-kriging interpolations. Groundwater for Sustainable Development 11, 100473.
Bhutiani, R., Kulkarni, D.B., Khanna, D.R., Gautam, A., 2016. Water quality, pollution source apportionment and health risk assessment of heavy metals in groundwater of an industrial area in North India. Exposure and Health 8(1), 3-18.
Bubphamala, T., Benjawan, L., Liamlaem, W., 2010. Seasonal variations of water quality in Bangpakong river and nearby canals at Banpho District. Agriculture and Natural Resources 44(4), 732-743.
Chaturvedi, A., Bhattacharjee, S., Mondal, G.C., Kumar, V., Singh, P.K., Singh, A.K., 2019. Exploring new correlation between hazard index and heavy metal pollution index in groundwater. Ecological Indicators 97, 239-246.
Chen, Y., Hu, R., Li, Z., Yang, C., Wang, X., Long, G., Xu, G. 2024. Exploring explicit and implicit graph learning for multivariate time series imputation. Engineering Applications of Artificial Intelligence 127, 107217.
Danboos, A., Sharil, S., Hamzah, F. M., Yafouz, A., Huang, Y. F., Ahmed, A.N., El-Shafie, A., 2023. Water budget-salt balance model for calculating net water saving considering different non-conventional water resources in agricultural process. Heliyon 9(4), 14770.
Dochashmeh-Gorgij, A., Asghari-Moghadam, E., 2019. Distribution analysis of heavy metals and nitrate in groundwater using Moran's Index and Bayesian Kriging (Case study: Azarshahr Plain). Iranian Water Research Journal 13(2), 21-31. (In Persian)
Eid, M.H., Eissa, M., Mohamed, E.A., Ramadan, H.S., Tamás, M., Kovács, A., Szűcs, P., 2024. New approach into human health risk assessment associated with heavy metals in surface water and groundwater using Monte Carlo Method. Scientific Reports 14(1), 1008.
Enayat, A., Einollahi Peer, F., Pakzad-Toochaei, S., Erfani, M., 2022. Measurement and zoning of heavy metals in groundwater wells along the Sistan River from the border to Hamoun International Wetland. Water and Soil Management and Modeling 4(1), 52-69. (In Persian)
Esfandyari, F., Mostafazadeh, R., Ebadi, E., Saadati, R., 2020. Modelling the spatial distribution and depletion of groundwater level in Tabriz plain. Geographical Engineering of Territory 3(6), 1-16.
FAO, Food and Agriculture Organization of the United Nations. 2017. Water quality for agriculture: Irrigation and drainage paper 29 rev.1 (3rd ed.). FAO.
Ghobadi, A., Cheraghi, M., Ardakani, S., Lorestani, B. 2021. Groundwater quality assessment in Asadabad Plain using WQI, Cd, HPI, HEI, PoS, and MI indices in 2018. Journal of Environmental Health Engineering 9(1), 1–21. (In Persian)
Hao, S., Li, F., Li, Y., Gu, C., Zhang, Q., Qiao, Y., Zhu, N., 2019. Stable isotope evidence for identifying the recharge mechanisms of precipitation, surface water, and groundwater in the Ebinur Lake basin. Science of the Total Environment 657, 1041-1050.
Hassan, H.M., Ismaeel, A.J., Ethaib, S., Al-Zaidi, B.M. 2023. Developing Spatial Models of Groundwater Quality in the Southwestern Desert of Iraq Using GIS, Inverse Distance Weighting, and Kriging Interpolation Techniques. Mathematical Modelling of Engineering Problems 10(4), 1169.
Hassanzadeh, R., Abbasnejad, A., Hamzeh, M.A., 2010. Groundwater pollution assessment in the urban area of Kerman. Journal of Environmental Studies 36(56), 101-110. (In Persian)
Hussain, S., Sultana, T., Sultana, S., Hussain, B., Mahboob, S., Al-Ghanim, K.A., Riaz, M.N., 2021. Seasonal monitoring of River through heavy metal bioaccumulation and histopathological alterations in selected fish organs. Journal of King Saud University-Science 33(8), 101626.
Jiang, Z., Mallants, D., Xu, T., Zhang, S., 2020. Numerical simulation of stable isotope fractionation with density changes in regional-scale confined geothermal aquifers. Applied Geochemistry 122, 104742.
Kashtabeh, R., Akbari, M., Heidari, A., Najafpour, A., 2023. Impact of Iron Ore Mining on the Concentration of some Heavy Metals and Soil Pollution Zoning (Case Study: Sangan Iron Ore Mine, Khaf-Iran). Water and Soil 37(1), 77-94.
Khazaz, L., Oulidi, H.J., El Moutaki, S., Ghafiri, A., 2015. Comparing and evaluating probabilistic and deterministic spatial interpolation methods for groundwater level of Haouz in Morocco. Journal of Geographic Information System 7(06), 76051.
Khouni, I., Louhichi, G., Ghrabi, A., 2021. Use of GIS based Inverse Distance Weighted interpolation to assess surface water quality: Case of Wadi El Bey, Tunisia. Environmental Technology and Innovation 24, 101892.
Li, J., Chen, J., Jin, J., Wang, S., Du, B., 2019. Effects of irrigation water salinity on maize (Zea may L.) emergence, growth, yield, quality, and soil salt. Water 11(10), 2095.
Li, Z., Xiao, K., Li, Y., Pan, F., Li, H., Zheng, Y., Liu, Y., 2024. Surface water-groundwater interactions drive the spatial variability of dissolved heavy metals and interfacial fluxes in mangrove intertidal zones. Journal of Hydrology 632, 130884.
Mahmoudabadi, E., Akbari, M., Sarmdian, F., 2025. Impact of Land Use Types on Bioavailable form of Heavy Metals and Soil Environmental Pollution. Journal of Geography and Environmental Hazards 14(1), 61-78.
Malakoutian, M., Khashi, Z., 2014. Measurement of heavy metals (arsenic, cadmium, lead, copper) in drinking water sources in southeastern Rafsanjan Plain. Journal of Behdasht dar Arseh (Health in the Field) 2(1), 1–9. (In Persian)
Mohan, S.V., Nithila, P., Reddy, S.J., 1996. Estimation of heavy metals in drinking water and development of heavy metal pollution index. Journal of Environmental Science and Health, Part A 31(2), 283–289.
Munns, R., Tester, M., 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59, 651–681.
Nawaz, R., Nasim, I., Irfan, A., Islam, A., Naeem, A., Ghani, N., Ullah, R., 2023. Water Quality Index and Human Health Risk Assessment of Drinking Water in Selected Urban Areas of a Mega City. Toxics 11(7), 577.
Nouri, M., Montazer Faraj, A., 2022. Monitoring and assessment of water quality in Tehran city using physicochemical and microbial indexes. Journal of Applied Research in Water and Wastewater 9(2), 121-124.
Oliaei, M.S., Barikloo, A., 2018. Assessment of Heavy metal's health risk in underground water resources (case study some parts of northeastern villages of Mahneshan city, Dandi region, Zanjan provience). Geography (Regional Planning) 8(31), 41-51.
Qadir, M., Quillérou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R.J., Noble, A.D., 2014. Economics of salt-induced land degradation and restoration. Natural Resources Forum 38(4), 282-295.
Rashid, A., Ayub, M., Ullah, Z., Ali, A., Khattak, S.A., Ali, L., Kaushik, P., 2022. Geochemical modeling source provenance, public health exposure, and evaluating potentially harmful elements in groundwater: Statistical and human health risk assessment (HHRA). International Journal of Environmental Research and Public Health 19(11), 6472.
Rengasamy, P., 2010. Soil processes affecting crop production in salt-affected soils. Functional Plant Biology 37(7), 613–620.
Scutarașu, E.C., Trinca, L.C., 2023. Heavy metals in foods and beverages: Global situation, health risks and reduction methods. Foods 12(18), 3340.
Shafavi, F., Ardakani, S., 2020. Groundwater quality assessment in the Razan watershed, Hamedan, using MI and PoS indices. Environment and Water Engineering 6(3), 257–272. (In Persian)
Shokoohi, A., Bahmani, A., 2021. Comparative evaluation of NSFWQI and IRWQISC indices in river water quality assessment. Water and Soil Resource Conservation 10(3), 97–114. (In Persian)
Smedley, P.L., Kinniburgh, D.G., 2002. A review of the source, behavior and distribution of arsenic in natural waters. Applied Geochemistry 17(5), 517-568.   
Thomas, E.O., 2023. Spatial evaluation of groundwater quality using factor analysis and geostatistical Kriging algorithm: a case study of Ibadan Metropolis, Nigeria. Water Practice and Technology 18(3), 592-607.
Vali-Nejad, F., Hassani, A.H., Sayyadi, M., 2016. Assessment of heavy metals (chromium, nickel, lead, and zinc) in groundwater of Eslamshahr and their spatial distribution cadmium using GIS. Environmental Science and Technology 18(2), 187-199. (In Persian)
Vallejo, B., Ponce, R., Ortega, T., Gómez-Parra, A., Forja, J., 2021. Greenhouse gas dynamics in a coastal lagoon during the recovery of the macrophyte meadow (Mar Menor, SE Spain). Science of The Total Environment, 779 146314.
Wang, X., Zou, T., Zhang, W., Fan, Y., Bai, Y., 2025. Vertical Binding Characteristics Between Dissolved Organic Matter and Heavy Metals in the Upper Reaches of the Yangtze River Using EEM-PARAFAC and 2D-FTIR-COS. Water 17(9), 1359.
Wet, R.F., West, A.G., Harris, C., 2020. Seasonal variation in tap water δ2H and δ18O isotopes reveals two tap water worlds. Scientific Reports 10(1), 13544.
Yadav, R.K., Dagar, J.C., 2016. Innovations in utilization of poor-quality water for sustainable agricultural production. In Innovative saline agriculture. Springer, New Delhi, pp. 219-263.
Zhu, S., Li, S., Shao, M.A., Qiao, J., Zhu, Y., 2024. Source identification and migration fate of heavy metals of soil-groundwater system in a thousand-year cultivation region. Environmental Geochemistry and Health 46(9), 345.