نانو کامپوزیت کیتوسان مغناطیسی اصلاح شده با زانتات: راهکاری نوین و پایدار برای جذب جیوه (II) از محلول آبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم پایه، دانشکدة گیاهان دارویی، دانشگاه تخصصی فناوری‌های نوین آمل، آمل، ایران.

2 گروه محیط‌ زیست، دانشکدة محیط‌زیست، دانشگاه تهران، تهران، ایران.

3 گروه مهندسی فضای سبز، دانشکدة جغرافیا و برنامه‌ریزی محیطی، دانشگاه سیستان و بلوچستان، زاهدان، ایران.

10.22059/jne.2025.394731.2803

چکیده

جیوه یکی از خطرناکترین عناصر در محیط آبی است که از منابع مختلف وارد آن می­شود. بنابراین هدف از این مطالعه حذف (II) Hg از محلول آبی با سنتز نانو کامپوزیت کیتوسان مغناطیسی اصلاح شده با گروه عاملی زانتات است. به‌منظور تشخیص و بررسی ویژگی­ های نانو کامپوزیت سنتز شده آنالیزهایFTIR ،VSM ، XRD و SEM انجام شد. جذب جیوه با استفاده از جاذب در سیستم ناپیوسته انجام شد و پارامترهای جذبی نظیر pH، زمان تماس، مقدار جاذب، غلظت اولیة یون جیوه و دما  مورد بررسی قرار گرفتند. برای اندازه­گیری غلظت یون جیوه از دستگاه جذب اتمی استفاده شد. براساس نتایج آزمایش‌ها، شرایط بهینة جذب در pH=7 ، 0/2 گرم در لیتر جاذب، غلظت اولیة یون جیوه 50 میلی­گرم بر لیتر و زمان تماس90 دقیقه انتخاب شد. در برازش داده ­ها با مدل ­های هم‌دمای لانگمویر و فرندلیخ، مشخص شد که مدل لانگمویر برازش بهتری (0/99 =R2) نسبت به مدل فرندلیخ (0/86 =R2) ارائه می­دهد. بیشینة ظرفیت جذب (qm) به‌دست آمده با مدل لانگمویر 332 میلی‌گرم بر گرم بود. نتایج سینتیک جذب نشان داد که فرآیند جذب از مدل سینتیکی شبه مرتبه دوم پیروی می­کند. نتایج ترمودینامیک نشان داد که فرآیند جذب یک فرآیند خودبه‌خودی و گرماده بوده و جاذب سنتز شده طی پنج چرخة متوالی توسط اسید کلریدریک 0/5 مولار بازیابی شد. همچنین درصد بازیابی یون­ جیوه برای 5 چرخة جذب و بازجذب تنها حدود 7% کاهش داشته است. نتایج نشان داد جاذب سنتز شده از ظرفیت جذب بالایی برخوردار بوده و قابلیت بازیابی و استفادة مجدد این جاذب پایدار بکارگیری آن را در سیستم تصفیة پساب از نظر اقتصادی توجیه می­کند.

کلیدواژه‌ها

عنوان مقاله [English]

Xathate modified magnetic chitosan nanocomposite: a novel and sustainable approach for the adsorption of mercury (II) from aqueous solution

نویسندگان [English]

  • Seyed Mehdi Hosseini 1
  • Robabeh Vajdi 2
  • Sanaz Khammar 3

1 Department of Basic Sciences, Faculty of Medicinal Plants, Amol University of Special Modern Technologies, Amol, Iran.

2 Department of Environmental Sciences, Faculty of Environment, University of Tehran, Tehran, Iran.

3 Department of Landscape Design Engineering, Faculty of Geography and Environmental Planning, University of Sistan and Baluchestan, Zahedan, Iran.

چکیده [English]

Hg (II) is considered as one of the most dangerous elements being released excessively into the aqueous environment from various sources. Therefore, the aim of this study is the removal of Hg (II) from aqueous solution by synthesizing a Xanthate Modified magnetic chitosan nanocomposite. Synthesized nanocomposite was characterized by FTIR, VSM, XRD and SEM. The adsorbent was tested by a batch system for Hg (II) adsorption and the effect of various parameters, such as pH, contact time, adsorbent dosage, the initial concentration of mercury and temperature were investigated. The concentration of Hg (II) was determined by an atomic adsorption spectrometer. The optimum condition of mercury removal was observed at pH=7, adsorbent dosage of 0/2 g L-1, the initial Hg (II) concentration of 50 mg L-1 and contact time of 90 minutes. The data fitted by Langmuir isotherm model (R2=0.99) better than Freundlich model (R2=0.86). The obtained maximum adsorption capacity (qm) by Langmuir model was 332 mg g-1. The results of kinetic studies showed that the adsorption process followed by pseudo-second-order kinetic model. The results of thermodynamics showed that the adsorption process was exothermic and spontaneous. Desorption study showed that adsorbed mercury could easily be desorbed from the adsorbent using 0/5 mol L-1 HCl. Reusability of adsorbent was investigated up to five cycles and desorption percentage of mercury ions decreased only about 7%. The result showed that the synthesized nanocomposite has a relatively high adsorption capacity for mercury adsorption, also according to recyclability and reusability, the application of this sustainable adsorbent in wastewater treatment system could be reasonable in terms of the economic aspect.

کلیدواژه‌ها [English]

  • Sustainable adsorbent
  • Mercury
  • Magnetic chitosan
  • Nanocomposite
Asgari, E., Sheikhmohammadi, A., Yeganeh, J., 2020. Application of the Fe3O4-chitosan nano-adsorbent for the adsorption of metronidazole from wastewater: Optimization, kinetic, thermodynamic and equilibrium studies. International journal of biological macromolecules 164, 694-706.
Azari, A., Gharibi, H., Kakavandi, B., Ghanizadeh, G., Javid, A., Mahvi, A.H., Sharafi, K., Khosravia, T., 2017. Magnetic adsorption separation process: an alternative method of mercury extracting from aqueous solution using modified chitosan coated Fe3O4 nanocomposites. Journal of Chemical Technology & Biotechnology 92(1), 188-200.
Baghdadi, M., Ghaffari, E., Aminzadeh, B., 2016. Removal of carbamazepine from municipal wastewater effluent using optimally synthesized magnetic activated carbon: Adsorption and sedimentation kinetic studies. Journal of Environmental Chemical Engineering 4(3), 3309-3321.
Bayramoğlu, G., Arica, M.Y., 2008. Adsorption of Cr (VI) onto PEI immobilized acrylate-based magnetic beads: isotherms, kinetics and thermodynamics study. Chemical Engineering Journal 139(1), 20-28.
Benguella, B., Benaissa, H., 2002. Cadmium removal from aqueous solutions by chitin: kinetic and equilibrium studies. Water Research 36(10), 2463-2474.
Bhatnagar, A., Ji, M., Choi, Y.H., Jung, W., Lee, S.H., Kim, S.J., Lee, G., Suk, H., Kim, H.S., Min, B., Kim, S. H., Jeon, B.H., & Kang, J.W., 2008. Removal of Nitrate from Water by Adsorption onto Zinc Chloride Treated Activated Carbon. Separation Science and Technology 43(4), 886-907.
Caner, N., Sarı, A., Tüzen, M., 2015. Adsorption characteristics of mercury (II) ions from aqueous solution onto chitosan-coated diatomite. Industrial & Engineering Chemistry Research 54(30), 7524-7533.
Crist, R.H., Oberholser, K., Shank, N., Nguyen, M., 1981. Nature of bonding between metallic ions and algal cell walls. Environmental Science & Technology 15(10), 1212-1217.
Dos Santos Menegucci, J., Santos, M.-K. M.S., Dias, D.J.S., Chaker, J.A., Sousa, M.H., 2015. One-step synthesis of magnetic chitosan for controlled release of 5-hydroxytryptophan. Journal of Magnetism and Magnetic Materials 380, 117-124.
Dursun, A.Y., 2006. A comparative study on determination of the equilibrium, kinetic and thermodynamic parameters of biosorption of copper (II) and lead (II) ions onto pretreated Aspergillus niger. Biochemical Engineering Journal 28(2), 187-195.
Fan, T., Liu, Y., Feng, B., Zeng, G., Yang, C., Zhou, M., Zhou, H., Tan, Z., Wang, X., 2008. Biosorption of cadmium (II), zinc (II) and lead (II) by Penicillium simplicissimum: Isotherms, kinetics and thermodynamics. Journal of Hazardous Materials 160(2-3), 655-661.
Fathipoor, T., Emtyazjoo, M., Kazemi, A., Sadeghi, M., 2024. Investigating the efficacy of chitosan-modified magnetic Spirulina biosorbent for mercury removal from aqueous solutions: isotherm model analysis. International Journal of Environmental Science and Technology 21(5), 4807-4816.
Gan, W., Gao, L., Zhan, X., Li, J., 2016. Preparation of thiol-functionalized magnetic sawdust composites as an adsorbent to remove heavy metal ions. RSC Advances 6(44), 37600-37609.
Guo, T. & Bulin, C. 2025. Construction of chitosan based magnetic bio adsorbent for efficient recovery of Ni (II). International Journal of Biological Macromolecules 307, 141864.
Gupta, A., Vidyarthi, S. R. & Sankararamakrishnan, N. 2015. STUDIES on glutaraldehyde crosslinked xanthated chitosan towards the removal of mercury (II) from contaminated water streams. Environmental Engineering & Management Journal (EEMJ) 14.
Hadavifar, M., Bahramifar, N., Younesi, H., Li, Q., 2014. Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups. Chemical Engineering Journal 237, 217-228.
Horst, M. F., Alvarez, M., Lassalle, V.L., 2016. Removal of heavy metals from wastewater using magnetic nanocomposites: Analysis of the experimental conditions. Separation Science and Technology 51(3), 550-563.
Kuo, C.-H., Liu, Y.-C., Chang, C.-M.J., Chen, J.-H., Chang, C.و Shieh, C.-J., 2012. Optimum conditions for lipase immobilization on chitosan-coated Fe3O4 nanoparticles. Carbohydrate Polymers 87(4), 2538-2545.
Liu, J., Liu, W., Wang, Y., Xu, M., Wang, B.و 2016. A novel reusable nanocomposite adsorbent, xanthated Fe3O4-chitosan grafted onto graphene oxide, for removing Cu (II) from aqueous solutions. Applied Surface Science 367, 327-334.
Monier, M., Abdel-Latif, D., 2012. Preparation of cross-linked magnetic chitosan-phenylthiourea resin for adsorption of Hg (II), Cd (II) and Zn (II) ions from aqueous solutions. Journal of Hazardous Materials 209, 240-249.
Muddin, N.A.I., Badsha, M.M., Arafath, M.A., Merican, Z.M.A., Hossain, M.S., 2024. Magnetic Chitosan Nanoparticles as a Potential Bio-sorbent for the Removal of Cr (VI) from Wastewater: Synthesis, environmental impact and challenges. Desalination and Water Treatment 100449.
Naushad, M., Ahamad, T., Alothman, Z.A., Ala'a, H., 2019. Green and eco-friendly nanocomposite for the removal of toxic Hg (II) metal ion from aqueous environment: Adsorption kinetics & isotherm modelling. Journal of Molecular Liquids 279, 1-8.
Ngah, W.W., Endud, C., Mayanar, R., 2002. Removal of copper (II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. Reactive and Functional Polymers 50(2), 181-190.
Owens, F. J. 2007. Effect of functionalization and boron and nitrogen substitution on some properties of carbon nanotubes. Materials Letters 61(10), 1997-1999.
Qiu, H., Lv, L., Pan, B.-C., Zhang, Q.-J., Zhang, W.-M., Zhang, Q.-X., 2009. Critical review in adsorption kinetic models. Journal of Zhejiang University-Science A 10(5), 716-724.
Rahman, M.H., Marufuzzaman, M., Rahman, M.A., Mondal, M.I.H., 2025. Adsorption kinetics and mechanisms of nano chitosan coated cotton fiber for the removal of heavy metals from industrial effluents. Heliyon 11.
Seidi, F., Reza Saeb, M., Huang, Y., Akbari, A., Xiao, H., 2021. Thiomers of chitosan and cellulose: effective biosorbents for detection, removal and recovery of metal ions from aqueous medium. The Chemical Record 21(7), 1876-1896.
Sun, X., Li, Q., Yang, L., Liu, H., 2016. Chemically modified magnetic chitosan microspheres for Cr (VI) removal from acidic aqueous solution. Particuology 26, 79-86.
Tao, X., Li, K., Yan, H., Yang, H., Li, A., 2016. Simultaneous removal of acid green 25 and mercury ions from aqueous solutions using glutamine modified chitosan magnetic composite microspheres. Environmental Pollution 209, 21-29.
Varma, A., Deshpande, S., Kennedy, J., 2004. Metal complexation by chitosan and its derivatives: a review. Carbohydrate Polymers 55(1), 77-93.
Wang, S., Liu, Y., Yang, A., Zhu, Q., Sun, H., Sun, P., Yao, B., Zang, Y., Du, X., Dong, L., 2022. Xanthate-modified magnetic Fe3O4@ SiO2-based polyvinyl alcohol/chitosan composite material for efficient removal of heavy metal ions from water. Polymers 14(6), 1107.
Yang, X., Wan, Y., Zheng, Y., He, F., Yu, Z., Huang, J., Wang, H., Ok, Y. S., Jiang, Y., Gao, B., 2019. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chemical Engineering Journal. 366, 608-621.
Yong, S. K., Bolan, N., Lombi, E., Skinner, W., 2013. Synthesis and characterization of thiolated chitosan beads for removal of Cu (II) and Cd (II) from wastewater. Water, Air, & Soil Pollution 224, 1720.
Zhang, L., Zeng, Y., Cheng, Z., 2016. Removal of heavy metal ions using chitosan and modified chitosan: A review. Journal of Molecular Liquids 214, 175-191.
Zhao, C., Ji, L., Liu, H., Hu, G., Zhang, S., Yang, M., Yang, Z., 2004. Functionalized carbon nanotubes containing isocyanate groups. Journal of Solid State Chemistry 177(12), 4394-4398.
Zhao, F., Repo, E., Sillanpää, M., Meng, Y., Yin, D., Tang, W.Z., 2015. Green synthesis of magnetic EDTA-and/or DTPA-cross-linked chitosan adsorbents for highly efficient removal of metals. Industrial & Engineering Chemistry Research 54(4), 1271-1281.
Zhou, L., Liu, Z., Liu, J., Huang, Q., 2010. Adsorption of Hg (II) from aqueous solution by ethylenediamine-modified magnetic crosslinking chitosan microspheres. Desalination 258(1-3), 41-47.