تحلیل تأثیر تغییرات کاربری اراضی بر تشدید جزایر گرمایی شهری در استان گیلان

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه محیط‌ زیست، دانشکدة منابع طبیعی، دانشگاه گیلان، صومعه‌سرا، ایران.

10.22059/jne.2025.393408.2796

چکیده

رشد جمعیت و توسعة شهری منجر به تغییرات ساختاری و کارکردی چشم‌گیری در کاربری اراضی شده است که این تغییرات بر جذب تابش خورشیدی، بازتابش، تعرق-تبخیر و انتقال حرارت تأثیرگذارند. هدف این پژوهش، بررسی تأثیر کاربری اراضی بر دمای سطح زمین (LST) در سال‌های 1989 و 2023 است. برای این منظور، تصاویر ماهواره‌ای لندست 5 و 8 پردازش شده و نقشه‌های دمای سطح زمین با استفاده از رادیانس طیفی، دمای درخشندگی، شاخص‌های پوشش گیاهی و الگوریتم باند منفرد استخراج گردید. نقشه‌های کاربری اراضی نیز با روش طبقه‌بندی نظارت‌شده و الگوریتم حداکثر احتمال تهیه شد و دقت آنها با ضریب کاپا به‌ترتیب برای سال‌های 1989 و 2023 برابر با 0/86 و 0/84 تأیید گردید. نتایج نشان داد میانگین دمای سطح زمین در مناطق مرکزی گیلان طی این دوره 4/66 درجة سلسیوس افزایش یافته است. همچنین، اراضی شهری و فضاهای باز گسترش یافته‌اند، درحالی‌که پوشش گیاهی و پهنه‌های آبی کاهش یافته‌اند. تغییرات کاربری اراضی در ارتباط با دما نشان می‌دهد که کاربری‌هایی با دمای بیشتر (مانند اراضی شهری و فضاهای باز) افزایش و کاربری‌هایی با دمای کمتر (مانند پوشش گیاهی و پهنه‌های آبی) کاهش یافته‌اند. یافته‌های این پژوهش تأثیر چشم‌گیر تغییرات کاربری اراضی بر دمای سطح و اقلیم محلی را نشان می‌دهد و می‌تواند به‌عنوان مبنایی برای برنامه‌ریزی محیط‌زیستی و مدیریت پایدار شهری مورد استفاده قرار گیرد.

کلیدواژه‌ها

عنوان مقاله [English]

Analysis of the impact of land use change on the intensification of urban heat islands in Guilan Province

نویسندگان [English]

  • Seyyed Mahmood Hashemi
  • Seyyedeh Masoumeh Taherzadeh Kouzani

Department of Environment, Faculty of Natural Resources, University of Guilan, Sowme Sara, Guilan, Iran.

چکیده [English]

Urban development driven by population growth has led to significant structural and functional changes in land use, influencing solar radiation absorption, reflection, evapotranspiration, and heat transfer. This study aims to assess the impact of land use on land surface temperature (LST) in the years 1989 and 2023. Landsat 5 and 8 satellite images were processed, and LST maps were derived using spectral radiance, brightness temperature, vegetation indices, and the single thermal band algorithm. Land use maps were generated through supervised classification using the maximum likelihood algorithm, with overall accuracy confirmed by Kappa coefficients of 0.86 (1989) and 0.84 (2023). Results revealed an increase of 4.66°C in average LST over the study period. Urban and open space areas expanded, while water bodies and vegetative cover decreased. The observed land use transitions correspond with a rise in high-temperature areas, specifically urban and open spaces, and a reduction in cooler zones such as water bodies and vegetation. These findings underscore the significant influence of land use dynamics on surface temperature and local climate conditions. The outcomes may serve as a basis for sustainable environmental planning and urban management strategies.

کلیدواژه‌ها [English]

  • Land surface temperature
  • Remote sensing
  • Land use
  • Climate change
  • Urban central cores of Guilan
Ahmadi, H., Gharagozlou, A., Karimi, M., 2022. Assessing the impact of urban land use changes on land surface temperature in Tehran using Landsat imagery and GIS techniques. Sustainable Cities and Society 77, 103571.
AlaviPanah, S.K., 2006. Thermal remote sensing and its applications in earth sciences. Tehran University Publications, First Edition. (In Persian)
Asgarian, S., Yavari, A., 2018. Urbanization effects on climatic features of coastal areas in northern Iran: A case study of the city of Rasht. Geographical Research 70(4), 565-579. (In Persian)
Asghari Saraskanroud, S., Emami, H., 2019. Monitoring land surface temperature and examining the relationship between land use and surface temperature using OLI and ETM+ imagery: Case study of Ardabil County. Applied Research in Geographic Sciences (Geographic Sciences) 19(53), 195-215. (In Persian)
Chakraborty, T., Hsu, A., Manya, D., Sheriff, G., 2022. Disproportionately higher exposure to urban heat in lower-income neighborhoods: A multi-country perspective. Nature Communications 13, 2161.
Cristóbal, J., Jiménez-Muñoz, J. C., Prakash, A., Mattar, C., Skoković, D., Sobrino, J.A., 2018. An improved single-channel method to retrieve land surface temperature from the Landsat-8 thermal band. Remote Sensing 10(3), 431.‏
Divsalar, N., Hashemi, S. M., Karbalay Saleh, S., 2022. Assessment of Land Surface Temperature Trend and Its Spatial Correlation with Landscape Structural Elements in Rasht Watershed, Guilan Province. Iranian Journal of Applied Ecology 11(3), 47-59.
Doostaki, M., Kamali, A., Baghri Badagh Abadi, M., Shirani, H., Shakiba, A., Shekofteh, H., 2022. Evaluating the spatial pattern of land surface temperature with emphasis on land use changes (Case study: Jiroft County). Sustainable Geographical Development 4(7), 86-99. (In Persian)
Eastman, J.R. 1999. Idrisi, A guid to GIS and Image processing. Vol 1, Clark University.
Effati, S., Malekian, A., Zare, M., 2021. Assessing the impact of land use changes on surface temperature using remote sensing in arid regions. Environmental Monitoring and Assessment 193(6), 371.
Ermida, S. L., Soares, P., Mantas, V., Göttsche, F.-M., Trigo, I. F., 2020. Google earth engine open-source code for land surface temperature estimation from the landsat series. Remote Sensing 12(9), 1471.
Estoque, R.C., Murayama, Y., Myint, S.W., 2017. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Science of The Total Environment 577, 349–359.
Gholizadeh, M., & Ahmadzadeh, A., 2021. The impact of urbanization on the urban heat island effect: A study in the context of Gilan Province, Iran. Sustainable Cities and Society 64, 102567.
Gilan Planning and Budget Organization, 2022. Socio-economic report of Gilan province. Retrieved from https://gilan.ir. (In Persian)
Grimm, N.B., Faeth, S.H., Golubiewski, N.E., Redman, C.L., Wu, J., Bai, X., Briggs, J.M., 2008. Global change and the ecology of cities. Science 319(5864), 756–760.
Halder, S., Sannigrahi, S., Pilla, F., 2021. Urban heat island intensity mapping and its spatial correlation with land use/land cover changes in Kolkata. Sustainable Cities and Society 64, 102561.
Harris Geospatial Solutions, 2023. ENVI Landsat LST Calibration Tools [Software]. Harris Geospatial Solutions. Retrieved from https://www.l3harrisgeospatial.com.
Hashemi, S.M., AlaviPanah, S.K., Dinarvandi, M., 2013. Evaluating the spatial distribution of land surface temperature in urban environments using thermal remote sensing. Environmental Studies 39 (1), 81-92. (In Persian)
Javan, K., Mehran, S., 2024. Monitoring land surface temperature using the disjoint window method in Tabriz County and its effect on land use changes. Geography and Human Relations 7(1), 186-204. (In Persian)
Jensen, J.R., 2005. Introductory Digital Image Processin: A Remote Sensing Perspective. Pearson Prentice Hall.
Jimenez-Munoz, J.C., Sobrino, J.A., Skoković, D., Mattar, C., Cristobal, J., 2014. Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data. IEEE Geoscience and remote sensing letters 11(10), 1840-1843.‏
Kayseri, Ö., Ekmekcioglu, Ö., 2024. Evaluation of land surface temperature changes caused by urban expansion using multi-temporal satellite imagery. Urban Climate 50, 101749.
Khazaei, M., 2014. Investigating the effect of land use change due to urban expansion on air temperature using satellite images (Case study: Yazd city). Master’s thesis, Faculty of Natural Resources and Desert Studies, Yazd University. (In Persian)
Lenney, M.P., Woodcock, C.E., Collins, J.B., Hamdi, H., 1996. The status of agricultural lands in Egypt the use of multitemporal NDVI features derived from Landsat TM. Remote Sensing of Environment, 56(1), 8-20.
Li, X., Zhou, Y., Asrar, G. R., Imhoff, M., Li, X., 2020. The surface urban heat island response to urban expansion: A panel analysis for the conterminous United States. Science of the Total Environment 706, 135694.
Li, X., Zhou, Y., Yu, S., Jia, G., Li, H., Li, W., 2019. Urban heat island impacts on building energy consumption: A review of approaches and findings. Energy 174, 407-419.‏
Magli, S., Lodi, C., Lombroso, L., Muscio, A., Teggi, S., 2015. Analysis of the urban heat island effects on building energy consumption. International Journal of Energy and Environmental Engineering 6, 91-99.‏
Nega, M., Balew, S., 2022. Monitoring of urban heat island effect using remote sensing and GIS in Addis Ababa city, Ethiopia. Environmental Challenges 8, 100537.
Norton, B.A., Coutts, A.M., Livesley, S.J., Harris, R.J., Hunter, A.M., Williams, N.S.G., 2015. Planning for cooler cities: A framework to prioritize green infrastructure to mitigate high temperatures in urban landscapes. Landscape and Urban Planning 134, 127-138.
Pal, S., Ziaul, S., 2017. Detection of land use and land cover change and land surface temperature in English Bazar urban centre. The Egyptian Journal of Remote Sensing and Space Science 20(1), 125-145.
Pandey, A., Mondal, A., Guha, S., Upadhyay, P.K., Singh, D., 2024. Land use status and its impact on land surface temperature in Imphal city, India. Geology, Ecology, and Landscapes 8(3), 261-275.‏
Peng, J., Liu, Y., Liu, Y., Wang, Y., Wang, J., 2022. Spatiotemporal pattern of urban heat island intensity and its driving factors in global megacities. Remote Sensing of Environment 269, 112793.
Rafieian, M., Javanmardi, M., Ahmadi, H., 2023. Socio-economic disparities and heat vulnerability in Iranian urban areas: Integrating remote sensing and demographic data. Urban Climate 45, 101273.
Rafiqi, M.R., Akbari, M., Fakharinia, M.H., Vahedinia, M.H., 2022. Comparative analysis of the impact of coniferous and broadleaf trees on land surface temperature changes (Case study: Shahid Chamran Park in Karaj and Chitgar Park in Tehran). Geography and Planning 26(82), 95-112. (In Persian)
Santamouris, M., 2020. Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change. Energy and Buildings 207, 109482.
Seto, K.C., Güneralp, B., Hutyra, L.R., 2012. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences 109(40), 16083-16088.
Sharma, R., Joshi, P.K., Kumar, M., 2016. Urban expansion and land surface temperature analysis using geospatial techniques: a case study of Delhi, India. Environment Monitoring and Assessment 188(8), 1-14.
Sobrino, J.A., Jiménez-Muñoz, J.C., Paolini, L., 2004. Land surface temperature retrieval from LANDSAT TM 5. Remote sensing of environment 90(4), 434-440.
Statistical Center of Iran, 2016. Statistical yearbook of Gilan province. Retrieved from https://www.amar.org.ir. (In Persian)
Tabassum, A., Basak, R., Shao, W., Haque, M.M., Chowdhury, T.A., Dey, H., 2023. Exploring the relationship between land use land cover and land surface temperature: A case study in Bangladesh and the policy implications for the global South. Journal of Geovisualization and Spatial Analysis 7(2), 25.
Teimouri, M., Karbasi, A., 2024. Urbanization effects on thermal environment in northern Iran: Insights from satellite-based monitoring. Remote Sensing Applications: Society and Environment 34, 101031.
U.S. Geological Survey (USGSb), 2023. Landsat 8-9 Data Users Handbook. Version 3.0. [Online Accessed: 19 May 2025]. Available: https://www.usgs.gov/landsat-missions/landsat-handbooks.
USGSa (United States Geological Survey), 2023. Landsat Collection 2 Level-1 Data Products. U.S. Geological Survey. Retrieved from https://www.usgs.gov/landsat-missions/landsat-level-1-data-products
Vanhellemont, Q., 2020. Combined land surface emissivity and temperature estimation from Landsat 8 OLI and TIRS. ISPRS Journal of Photogrammetry and Remote Sensing 166, 390-402.
Voogt, J.A., Oke, T.R., 2003. Thermal remote sensing of urban climates. Remote Sensing of Environment 86(3), 370-384.
Wang, R., Murayama, Y., 2020. Geo-simulation of land use/cover scenarios and impacts on land surface temperature in Sapporo, Japan. Sustainable Cities and Society 63, 102432.
Weng, Q., 2009. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS Journal of Photogrammetry and Remote Sensing 64(4), 335-344.‏
Weng, Q., Fu, P., Gao, F., 2014. Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data. Remote Sensing of Environment 145, 55-67.
Weng, Q., Fu, P., Gao, F., 2021. Modeling and analyzing land surface temperature in 30 global megacities using nighttime light and vegetation index. ISPRS Journal of Photogrammetry and Remote Sensing 172, 27-39.
Weng, Q., Lu, D., Schubring, J., 2004. Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment 89(4), 467–483.
Wu, J., 2010. Urban sustainability: an inevitable goal of landscape research. Landscape Ecology 25, 1-4.‏
Zargari, M., Mofidi, A., Entezari, A., Baaghideh, M., 2024. Climatic comparison of surface urban heat island using satellite remote sensing in Tehran and suburbs. Scientific Reports 14(1), 643.‏
Zhang, Y., Wu, J., Liu, H., 2020. Machine learning for land surface temperature prediction: A review. Environmental Science and Pollution Research 27(2), 1447-1460.
Zhao, L., Lee, X., Smith, R.B., Oleson, K., 2014. Strong contributions of local background climate to urban heat islands. Nature 511(7508), 216-219.
Zhou, D., Wang, Q., Cadenasso, M. L., 2017. Effects of changing land cover on urban heat islands: A review and future research directions. Landscape and Urban Planning 162, 27-38.
Zhou, D., Xiao, J., Bonafoni, S., Berger, C., Deilami, K., Zhou, Y., Sobrino, J.A., 2019. Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives. Remote Sensing 11(1), 48.
Zohary, M., 1981. On the flora and vegetation of the Middle East: structure and evaluation. Published in “Phytogeography of Iran (a collection of papers on the application of phytogeography in the Conservation)”, Compiled and translated in Farsi by H. Madjnoonian. 1999. Department of Environmental Conservation. Dayereye Sabz Press. Tehran, Iran. (In Persian)