مدل‌سازی شدت وقوع مخاطرات محیطی در سطح رویشگاه‌های جنگلی (مطالعة جنگل‌های شهرستان دورود، استان لرستان)

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم جنگل، دانشکدة منابع طبیعی و علوم زمین، دانشگاه شهرکرد، شهرکرد، ایران.

10.22059/jne.2025.396181.2811

چکیده

ارزیابی شدت مواجهه رویشگاه‌های جنگلی با مخاطرات محیطی چندگانه، گامی بنیادین در تحلیل آسیب‌پذیری و برنامه‌ریزی سازگاری این زیست‌بوم‌های حساس به‌شمار می‌آید. این پژوهش با هدف مدل‌سازی شبکه‌مبنای شدت وقوع مخاطرات چندگانه در سطح رویشگاه‌های جنگلی شهرستان دورود، استان لرستان انجام شد. ابتدا با تکیه بر داده‌های مکانی، تصاویر ماهواره‌ای و بهره‌گیری از روش ساختاریافتة دلفی، نقشه‌های ریسک برای ده مؤلفة مخاطره‌زا شامل خشکسالی، ریزگرد، تبخیر و تعرق سالانه، دمای بیشینه، سیلاب، تندباد، زمین‌لغزش، نزدیکی به روستاها، اثر جاده و فرسایش خاک تولید و وزن‌دهی شدند. سپس نقشه‌های طبقه‌بندی‌شده براساس پنج سطح شدت با وزن‌های اختصاص‌یافته ترکیب گردیدند و شاخص نهایی شدت وقوع مخاطرات با میانگین‌گیری شبکه‌ای در واحدهای تحلیلی محاسبه شد. نتایج نشان داد خشکسالی (0/182)، ریزگرد (0/159) و مجاورت با روستا (0/141) دارای بیشترین اهمیت نسبی بوده‌اند. شاخص نهایی بین 0/128 تا 0/414 متغیر بوده و نواحی مرکزی رویشگاه‌ها در معرض شدت بالاتر قرار گرفته‌اند. تحلیل همپوشانی شدت مخاطرات با طبقات تراکم تاج‌پوشش نشان داد که رویشگاه‌های با تراکم متوسط (50–25 درصد) و پایین (25–10 درصد) به‌ترتیب 5/35 درصد و 31/8 درصد از سطوح دارای شدت بالا را شامل می‌شوند. همچنین، 35/9٪ از نواحی با تراکم بیش از 50٪ در طبقه با شدت زیاد مخاطرات قرار گرفته‌اند. نتایج بیانگر نقش ترکیبی تغییرات اقلیمی، مداخلات انسانی و فشارهای کاربری در افزایش شدت مخاطرات و تهدید پایداری اکولوژیک جنگل‌هاست. یافته‌های این مطالعه می‌توانند مبنایی کارآمد برای تصمیم‌سازی هدفمند در حوزة حفاظت، ارزیابی ریسک، مدیریت سازگارانه و ارتقاء تاب‌آوری رویشگاه‌های جنگلی در مواجهه با چالش‌های فزایندة محیطی فراهم آورند.

کلیدواژه‌ها

عنوان مقاله [English]

Modeling of environmental hazard intensity in forest habitats (Case study: forests of Doroud County, Lorestan Province)

نویسندگان [English]

  • Masoud Mahmoudi
  • Nabiollah Yarali
  • Davood Mafi-Gholami

Department of Forest Sciences, Faculty of Natural Resources and Earth Sciences, Shahrekord University, Shahrekord, Iran.

چکیده [English]

Assessing the exposure of forest habitats to multiple environmental hazards is a fundamental step in understanding their ecological vulnerability and planning effective adaptation strategies. This study focuses on the forest ecosystems of Doroud County in Lorestan Province, western Iran, aiming to model the spatial intensity of multiple environmental hazards using a network-based approach. Ten major hazard factors were considered: drought, dust storms, annual evapotranspiration, maximum temperatures, flooding, destructive windstorms, landslides, proximity to rural settlements, road effects, and soil erosion. Hazard maps for each factor were developed using spatial data and satellite imagery. Through the Delphi method, expert opinions were used to assign relative weights to each hazard. The classified hazard maps were then combined according to their weights to create a composite Multi-Hazard Intensity Index (MHII), which was later reclassified into five intensity levels. The results showed that drought (0.182), dust storms (0.159), and proximity to villages (0.141) were the most influential hazards, while flooding (0.043) and landslides (0.036) had the lowest weights. The MHII values ranged from 0.128 to 0.414. The highest intensities were mainly found in central forest zones, while the southern areas generally had lower hazard levels. Overlay analysis with forest canopy density classes revealed that forests with moderate (25–50%) and low (10–25%) canopy cover accounted for 35.5% and 31.8% of the high-intensity hazard areas, respectively. Interestingly, 35.9% of the dense forest areas (>50%) were also exposed to high hazard intensities. These findings highlight the combined impact of climate change and human activities on increasing hazard exposure in forest landscapes. The spatial outputs of this study can support practical decision-making in conservation, risk management, and forest resilience planning across hazard-prone areas.

کلیدواژه‌ها [English]

  • Delphi method
  • Ecological vulnerability
  • Forest canopy density classes
  • Geographic Information System (GIS)
Abdollahi, K., Bashir, I., Verbeiren, B., Harouna, M.R., Van Griensven, A., Huysmans, M., Batelaan, O., 2017. A distributed monthly water balance model: formulation and application on Black Volta Basin. Environmental Earth Sciences 76(198), 1-18.
Adger, W.N., 2006. Vulnerability. Global Environmental Change 16(3), 268-281.
Alimahmoudi Sarab, A., Faghihi, J., Danekar, A., & Atarod, P., 2015. The effect of spatial criteria on the fire risk potential in the Zagros forests. Iranian Journal of Forest and Poplar Research 23(3): 425–438.
Alirezaei, Z., Gandomkar, A., Khodagholi, M., Abbasi, A., 2019. Detection of drought impacts on the spatiotemporal dynamics of Zagros oak forests (Case study: Lorestan oak forests). Journal of Forests and Rangelands Conservation Research 17(1), 107-123.
Etemadi, H., Samadi, S.Z., Sharifikia, M., Smoak, J.M., 2016. Assessment of climate change downscaling and non-stationarity on the spatial pattern of a mangrove ecosystem in an arid coastal region of southern Iran. Theoretical and Applied Climatology 126, 35-49.
Ettehadi Osgouei, P., Kaya, Ş., 2023. A comprehensive analysis of the spatio-temporal variation of satellite-based aerosol optical depth in Marmara region of Türkiye during 2000–2021. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLVIII-M-1, 509-514.
FAO., 2020. Global Forest Resources Assessment 2020: Main report. Rome.
Haghigian, F., 2018. Biological aspects of Heart moth, Dicycla oo L. (Lep., Noctuidae) in Chaharmahal and Bakhtiari Oak forests. Iranian Journal of Forests and Rangelands Protection Research (IJFRPR) 17(2), 257-264. (In Persian)
Heydari, M., Attar Roshan, S., Jafarian, E., Abyat, M., 2021. Modeling and zoning fire-prone areas in the Zagros forests using GIS based on logistic regression. Geography and Environmental Hazards 10(2): 43–58.
Jaafari, A., Gholami, D. M., Zenner, E.K., 2017. A Bayesian modeling of wildfire probability in the Zagros Mountains, Iran. Ecological Informatics 39, 32-44.
Jaafari, A., Rahmati, O., Zenner, E.K., Mafi-Gholami, D., 2022. Anthropogenic activities amplify wildfire occurrence in the Zagros eco-region of western Iran. Natural Hazards 114(1), 457-473.
Jaafari, A., Zenner, E.K., Pham, B.T., 2018. Wildfire spatial pattern analysis in the Zagros Mountains, Iran: A comparative study of decision tree-based classifiers. Ecological Informatics 43, 200-211.
Jia, H., Wang, X., Sun, W., Mu, X., Gao, P., Zhao, G., Li, Z., 2022. Estimation of Soil Erosion and Evaluation of Soil and Water Conservation Benefit in Terraces under Extreme Precipitation. Water 14(11), 1675.
Khosravi, K., Panahi, M., Golkarian, A., Keesstra, S.D., Saco, P.M., Bui, D.T., Lee, S., 2020. Convolutional neural network approach for spatial prediction of flood hazard at national scale of Iran. Journal of Hydrology 591, 125552.
Leberger, R., Rosa, I. M., Guerra, C.A., Wolf, F., Pereira, H.M., 2020. Global patterns of forest loss across IUCN categories of protected areas. Biological Conservation 241, 108299.
Liu, H., Park Williams, A., Allen, C.D., Guo, D., Wu, X., Anenkhonov, O.A., Badmaeva, N.K., 2013. Rapid warming accelerates tree growth decline in semi‐arid forests of Inner Asia. Global change biology 19(8), 2500-2510.
Liu, S., Csillik, O., Ordway, E. M., Chang, L.L., Longo, M., Keller, M., Moorcroft, P.R., 2025. Environmental drivers of spatial variation in tropical forest canopy height: Insights from NASA’s GEDI spaceborne LiDAR. Proceedings of the National Academy of Sciences 122(10), e2401755122.
Mafi-Gholami, D., Feghhi, J., Danehkar, A., Yarali, N., 2015. Classification and prioritization of negative factors affecting on mangrove forests using Delphi method (a case study: mangrove forests of Hormozgan province, Iran). Advances in Bioresearch 6(3).
Mafi-Gholami, D., Pirasteh, S., Ellison, J.C., Jaafari, A., 2021. Fuzzy-based vulnerability assessment of coupled social-ecological systems to multiple environmental hazards and climate change. Journal of Environmental Management 299, 113573.
Mahendra, R.S., Mohanty, P.C., Bisoyi, H., Kumar, T.S., Nayak, S., 2011. Assessment and management of coastal multi-hazard vulnerability along the Cuddalore–Villupuram, east coast of India using geospatial techniques. Ocean and Coastal Management 54(4), 302-311.
Mahmoudi, B., Zenner, E., Mafi-Gholami, D., Eshaghi, F., 2023. Livelihood analysis and a new inferential model for development of forest-dependent rural communities. Sustainability 15(11), 9008.
Mahmoudzadeh, H., Azizmoradi, M., 2019. Modeling deforestation using neural networks and geographic information systems (Forests around Khorramabad). Remote Sensing and GIS in Natural Resources 10(4), 74-90.
Mansourmoghaddam, M., Naghipur, N., Rousta, I., Ghaffarian, H.R., 2022. Temporal and spatial monitoring and forecasting of suspended dust using google earth engine and remote sensing data (Case Study: Qazvin Province). Desert Management 10(1), 77-98.
Marcinkowski, P., Szporak-Wasilewska, S., Kardel, I., 2022. Assessment of soil erosion under long-term projections of climate change in Poland. Journal of Hydrology 607, 127468.
Masoudian, E., Mirzaei, A., Bagheri, H., 2025. Assessing wildfire susceptibility in Iran: Leveraging machine learning for geospatial analysis of climatic and anthropogenic factors. Trees, Forests and People 19: 100774.
Michelsen, O., McDevitt, J.E., Coelho, C.R., 2014. A comparison of three methods to assess land use impacts on biodiversity in a case study of forestry plantations in New Zealand. The International Journal of Life Cycle Assessment 19, 1214-1225.
Mirzapour, S., Kheirkhah Zarkesh, M., Azizi, Z., 2022. Assessment and prediction of drought conditions in the Zagros region based on remote sensing indices and general circulation models over a 20-year period. Journal of Forests and Rangelands Conservation Research 20(2), 317-335.
Mo, L., Crowther, T. W., Maynard, D. S., Van den Hoogen, J., Ma, H., Bialic-Murphy, L., Ontikov, P., 2024. The global distribution and drivers of wood density and their impact on forest carbon stocks. Nature Ecology & Evolution 8, 2195-2212.
Ngo, P.T.T., Panahi, M., Khosravi, K., Ghorbanzadeh, O., Kariminejad, N., Cerda, A., Lee, S., 2021. Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran. Geoscience Frontiers 12(2), 505-519.
Nguyen, K.A., Liou, Y.A., Terry, J.P., 2019. Vulnerability of Vietnam to typhoons: A spatial assessment based on hazards, exposure and adaptive capacity. Science of the Total Environment 682, 32-44.
Perzl, F., Bono, A., Garbarino, M., Motta, R., 2021. Protective effects of forests against gravitational natural hazards. In Protective forests as Ecosystem-based solution for Disaster Risk Reduction (ECO-DRR) (pp. 1-23). IntechOpen.
Pourhashemi, M., Mohajer, M.R.M., Zobeiri, M., Amiri, G.Z., Panahi, P., 2004. Identification of forest vegetation units in support of government management objectives in Zagros forests, Iran. Scandinavian Journal of Forest Research 19(S4), 72-77.
Pouyan, S., Pourghasemi, H.R., Bordbar, M., Rahmanian, S., Clague, J.J., 2021. A multi-hazard map-based flooding, gully erosion, forest fires, and earthquakes in Iran. Scientific Reports 11(1), 14889.
Rahimi, E., Dong, P., 2022. What are the main human pressures affecting Iran’s protected areas?. Journal of Environmental Studies and Sciences 12(4), 682-691.
Salarvand Shamsi, H., Amir Eslam, B., Pourbabaei, H., 2017. Investigating the effect of forest stratification on the accuracy of quantitative tree characteristics estimation using multi-tree sampling method in western Iran forests (Case study: Doroud, Lorestan). Journal of Forest and Wood Products 70(3), 469-478.
Sivrikaya, F. and Bozali, N., 2012. Determining carbon stock: a case study from Türkoğlu planning unit. Bartın Orman Fakültesi Dergisi 14(Special issue), 69-76.
Spehn, E.M., Rudmann-Maurer, K., Körner, C., 2011. Mountain biodiversity. Plant Ecology and Diversity 4(4), 301-302.
Sreeparvathy, V., Srinivas, V.V., 2022. Meteorological flash droughts risk projections based on CMIP6 climate change scenarios. npj Climate and Atmospheric Science 5(1), 77.
Thakur, S., Negi, V.S., Dhyani, R., Satish, K.V., Bhatt, I.D., 2021. Vulnerability assessments of mountain forest ecosystems: A global synthesis. Trees, Forests and People 6, 100156.
The General Department of Environmental of Kohgiluyeh and Boyer Ahmad Province, (GDEEKBA), 2022. Management plan of Kooh-e-Dil Protected Area. 236 p.
Valavi, R., Shafizadeh-Moghadam, H., Matkan, A., Shakiba, A., Mirbagheri, B., Kia, S.H., 2019. Modelling climate change effects on Zagros forests in Iran using individual and ensemble forecasting approaches. Theoretical and Applied Climatology 137, 1015-1025.
Xia, M., Jia, K., Zhao, W., Liu, S., Wei, X., Wang, B., 2021. Spatio-temporal changes of ecological vulnerability across the Qinghai-Tibetan Plateau. Ecological Indicators 123, 107274.