Determination of optimum areas for the landfill with emphasis on the urban expansion trend based on the combination of the Analytical Hierarchy Process and the Ordered Weighted Averaging model

Document Type : Research Paper


1 MSc. Student of Remote Sensing and GIS, Faculty Geography, Tehran Univercity

2 Assistant Porfessor, Departement of Remote Sensing and GIS, Faculty Geography, Tehran Univercity


According to the urban irregular expansion and the absence of appropriate consumption patterns, the most reasonable and low-cost method for the disposal of urban wastes is the landfill. Today, creating suitable places for the landfill is getting more difficult due to the urban expansion and development as well as the increase of public opposition. for this reason, it is recommended that to not choose places which located in the direction of the urban future expansion and residential areas growth. therefore, the main aim of the current study is to determine the optimum location for the landfill, regarding the urban physical expansion of Tehran city in a 28 years period Taking into account the risk parameter in decision making. In the current work, in addition to environmental, social and climate criteria for investigating Tehran physical expansion, Landsat satellite data from 1367 up to 1395 was used. In the present paper, weighing the different criteria of the paired comparison and The Ordered Weighted Averaging model is used to extract the appropriate suitable Place, taking into account the concept of risk in decision making. Lastly, suitable places for waste landfill have been selected considering the trend of urban expansion in different geographic directions over the past 28 years. The results of the Ordered Weighted Averaging model indicate that the maximum and minimum area of the suitable place for waste landfill are selected in the OR and AND modes, respectively. Investigations implied that the best places for the landfill are southern, southwest and western areas of Tehran. But due to considering the expansion of the city in different geographical directions over the past 28 years, the final suitable Place for waste landfill is the appropriate options in the geographic direction of southern Tehran.


Abediniangerabi, B., & Kamalirad, S. (2016). Landfill sitting using MCDM and spatial information: a case study in Tehran metropolitan. Journal of Urban and Environmental Engineering (JUEE), 10(1), 11-24.
Allen, B. G., Caetano, P., Costa, C., Cummins, V., Donnelly, J., Koukoulas, S., ... & Vendas, D. (2003). A landfill site selection process incorporating GIS modeling. In Proceedings of Sardinia.
Al-Hanbali, A., Alsaaideh, B., & Kondoh, A. (2011). Using GIS-based weighted linear combination analysis and remote sensing techniques to select optimum solid waste disposal sites within Mafraq City, Jordan. Journal of geographic information system, 3(04), 267.
Bagchi. A. (1994). Design, construction, and monitoring of landfills. 2nd ed., John Wiley & Sons. Inc., New York.
Boroushaki, S., & Malczewski, J. (2008). Implementing an extension of the analytical hierarchy process using ordered weighted averaging operators with fuzzy quantifiers in ArcGIS. Computers & Geosciences, 34(4), 399-410.
Chang, N. B., Parvathinathan, G., & Breeden, J. B. (2008). Combining GIS with fuzzy multicriteria decision-making for landfill siting in a fast-growing urban region. Journal of environmental management, 87(1), 139-153.
Effat, H. A., & Hegazy, M. N. (2012). Mapping potential landfill sites for North Sinai cities using spatial multicriteria evaluation. The Egyptian Journal of Remote Sensing and Space Science, 15(2), 125-133.
Eskandari, M., Homaee, M., & Mahmodi, S. (2012). An integrated multi criteria approach for landfill siting in a conflicting environmental, economical and socio-cultural area. Waste Management, 32(8), 1528-1538.
Gorsevski, P. V., Donevska, K. R., Mitrovski, C. D., & Frizado, J. P. (2012). Integrating multi-criteria evaluation techniques with geographic information systems for landfill site selection: a case study using ordered weighted average. Waste management, 32(2), 287-296.
Henry, R. K., Yongsheng, Z., & Jun, D. (2006). Municipal solid waste management challenges in developing countries–Kenyan case study. Waste management, 26(1), 92-100.
Jelokhani-Niaraki, M., & Malczewski, J. (2015a). A group multicriteria spatial decision support system for parking site selection problem: A case study. Land Use Policy, 42, 492-508.
Jelokhani-Niaraki, M., & Malczewski, J. (2015b). Decision complexity and consensus in Web-based spatial decision making: A case study of site selection problem using GIS and multicriteria analysis. Cities, 45, 60-70.
Jelokhani-Niaraki, M., & Malczewski, J. (2015c). The decision task complexity and information acquisition strategies in GIS-MCDA. International Journal of Geographical Information Science, 29(2), 327-344.
Jensen, J. R., & Lulla, K. (1987). Introductory digital image processing: a remote sensing perspective.
Khan, D., & Samadder, S. R. (2015). A simplified multi-criteria evaluation model for landfill site ranking and selection based on AHP and GIS. Journal of Environmental Engineering and Landscape Management, 23(4), 267-278.
Kontos, T. D., Komilis, D. P., & Halvadakis, C. P. (2005). Siting MSW landfills with a spatial multiple criteria analysis methodology. Waste management, 25(8), 818-832.
Lin, H. Y., & Kao, J. J. (1998). A vector-based spatial model for landfill siting. Journal of Hazardous Materials, 58(1), 3-14.
Malczewski, J. (1999). GIS and multicriteria decision analysis. John Wiley & Sons.
Malczewski, J. (2006). Ordered weighted averaging with fuzzy quantifiers: GIS-based multicriteria evaluation for land-use suitability analysis. International Journal of Applied Earth Observation and Geoinformation, 8(4), 270-277.
Mikkelsen, P. S., Häfliger, M., Ochs, M., Jacobsen, P., Tjell, J. C., & Boller, M. (1997). Pollution of soil and groundwater from  infiltration of  highly contaminated stormwater–a case study. Water Science and Technology, 36(8-9), 325-330.
Mirghafoori. H. (2014). Multi-criteria decision-making methods. Jahad-daneshgahi Publications, Tehran (in Persian).
Miyanabadi, H & Afsha, A. (2008). Using ordered weighted average (OWA) method in decision-making and risk management, " the first conference on strategic project management, sharif university, (in Persian).
Motlagh, Z. K., & Sayadi, M. H. (2015). Siting MSW landfills using MCE methodology in GIS environment (Case study: Birjand plain, Iran). Waste Management, 46, 322-337.
Nazari, A., Salarirad, M. M., & Bazzazi, A. A. (2012). Landfill site selection by decision-making tools based on fuzzy multi-attribute decision-making method. Environmental Earth Sciences, 65(6), 1631-1642.
Rahmat, Z. G., Niri, M. V., Alavi, N., Goudarzi, G., Babaei, A. A., Baboli, Z., & Hosseinzadeh, M. (2017). Landfill site selection using GIS and AHP: a case study: Behbahan, Iran. KSCE Journal of Civil Engineering, 21(1), 111-118.
Ramesht, M. N., Hatmy-Fard, R & S. Mousavi, H. (2012).  Miunicipal solid waste landfill site selection using AHP model and technidues of GIS (Case study: Kuhdasht city) ," Journal of geography and planing, vol. 17, pp 119-138, In Persian.
Ranjbar, A., Turabi, S. A & Hkym-Pur, F. (2014). Site selection urban waste landfill on the methods of hierarchical analysis and planing command prompt V with zero and one (Case study: Tabriz city) ," Journal of research science and technology survey, vol. 4, pp 217-230, In Persian.
Saaty, T. L. (1980). The Analytical Hierarchy Process, Planning, Priority. Resource Allocation. RWS Publications, USA.
Saaty, T. L. (1986). Axiomatic foundation of the analytic hierarchy process. Management science, 32(7), 841-855.
Saaty, T. L., & Vargas, G. L. (1991). Prediction, projection and forecasting Kluwer.
Savage, G. M., Diaz, L. F., Golueke, C. G., Martone, C., & Ham, R. K. (1998). Guidance for landfilling waste in economically developing countries. EPA, CalRecovery.
Şener, Ş., Şener, E., Nas, B., & Karagüzel, R. 2010. Combining AHP with GIS for landfill site selection: a case study in the Lake Beyşehir catchment area (Konya, Turkey). Waste Management, 30(11), 2037-2046.
Siddiqui, M. Z., Everett, J. W., & Vieux, B. E. (1996). Landfill siting using geographic information systems: a demonstration. Journal of environmental engineering, 122(6), 515-523.
United States Environmental Protection Agency," Office of Solid Waste. (2010). Municipal solid waste in the United States.
USEPA. (1993). Solid Waste Disposal Facility Criteria, " EPA530-R-93-017, US EPA, Washington, DC.
Uyan, M. (2014). MSW landfill site selection by combining AHP with GIS for Konya, Turkey. Environmental earth sciences, 71(4), 1629-1639.
Varnes, D. J. (1958). Landslide types and processes. Landslides and engineering practice, 24, 20-47.
Vasiljević, T. Z., Srdjević, Z., Bajčetić, R., & Miloradov, M. V. (2012). GIS and the analytic hierarchy process for regional landfill site selection in transitional countries: a case study from Serbia. Environmental management, 49(2), 445-458.
Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Transactions on systems, Man, and Cybernetics, 18(1), 183-190.
Yager, R. R., & Kelman, A. (1999). An extension of the analytical hierarchy process using OWA operators. Journal of Intelligent & Fuzzy Systems, 7(4), 401-417.