Habitat modeling of Black Cobra (Walterinnesia morgani ) in Iran; predicting current and future potential distribution under habitat conditions and climate change

Document Type : Research Paper

Authors

Department of Environmental Science, Faculty of Natural Resources, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.

10.22059/jne.2023.360850.2565

Abstract

In recent years, the destruction of biodiversity in Iran and worldwide has been increasingly attributed to the alarming effects of climate change. To effectively address the negative consequences on living organisms, the utilization of modeling methods is essential. This study focuses on the habitat and distribution of an unidentified species of black cobra in the southern and southwestern regions of Iran. By considering habitat variables and current/future climate conditions, specifically under two scenarios of future climate change (2040 and 2100) - mild (SSP126) and severe (SSP585) - the study employs the maximum entropy method with six climate models for modeling using Rstudio software, covering 64 present points and 18 environmental layers. The results revealed a predicted expansion of the black cobra's potential habitat beyond the previously documented areas in Iran. Furthermore, a comparison between future and current models demonstrates an estimated increase in the species' habitat by 14.27% and 18.58% under the mild and severe scenarios respectively, by 2040, compared to present conditions. However, by 2100, the favorable habitat for the black cobra is projected to decline to 12.11% and 12.19% under the mild and severe scenarios respectively. The findings underscore the influential factors in the distribution of the black cobra, with the human footprint emerging as the most significant. Climatic variables also play a crucial role in determining the habitat suitability for this species, as rising temperatures and reduced precipitation affect its desirability. In conclusion, the expanding range of suitable habitats for the black cobra until 2040 is expected to result in population growth and an escalation of conflicts between this species and residents of the south and southwest regions of Iran. However, if global warming continues to worsen until 2100, it will yield a grave impact, jeopardizing the availability of favorable habitats and putting the black cobra, like many other species, at a heightened risk of extinction.

Keywords

Amiri, M., Kiani Sadr, M., Pesarakloo, A., Najibzadeh, M., 2019. Habitat suitability of the Critically  Endangered Lorestan Newt, Neurergus kaiseri (SCHMIDT, 1952) In Southwestern Iran. Journal of Animal Environment 11(2), 147-154. (In Persian)
Asadi,A., Kaboli, M., Ahmadi, M., Kafash, A., 2016. Prediction for relict population of Mountains Vipres (Montivipera spp) in western Iran; an ensemble distribution modeling along with climate change detection from past to future. Journal of Natural Environment 69(2), 303-327. (In Persian)
Barnosky, A.D., Matzke, N., Tomiya, S., Wogan, G.O., Swartz, B., Quental, T.B., Marshall, C., Ferrer, E.A., 2011. Has the Earth’s sixth mass extinction already arrived?. Nature 471(7336), 51-57.
Blaustein, A.R., Kiesecker, J.M., 2002. Complexity in conservation: lessons from the global decline of amphibian populations. Ecology Letters 5(4), 597-608.
Change, I.C., 2014. Impacts, adaptation and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental Panel on Climate Change 1132.
Chippaux, J.P., 2017. Snakebite envenomation turns again into a neglected tropical disease! Journal of Venomous Animals and Toxins including Tropical Diseases 23(1), 38.
Climate data, 2022. Future climate. Available from www.worldclime.com.
Cordier, T., Alonso‐Sáez, L., Apothéloz‐Perret‐Gentil, L., Aylagas, E., Bohan, D.A., Bouchez, A., Lanzén, A., 2021. Ecosystems monitoring powered by environmental genomics: a review of current strategies with an implementation roadmap. Molecular Ecology 30(13), 2937-2958.
Cox, N., Young, B. E., Bowles, P., Fernandez, M., Marin, J., Rapacciuolo, G., Xie, Y., 2022. A global reptile assessment highlights shared conservation needs of tetrapods. Nature 605(7909), 285-290.
Dawson, T.P., Jackson, S.T., House, J.I., Prentice, I.C., Mace, G.M., 2011. Beyond predictions: biodiversity conservation in a changing climate. Science 332(6025), 53-58.
Del Río, S., Canas, R., Cano, E., Cano-Ortiz, A., Musarella, C., Pinto-Gomes, C., Penas, A., 2021. Modeling the impacts of climate change on habitat suitability and vulnerability in deciduous forests in Spain. Ecological Indicators 131, 108202.
Dirzo, R., Young, H.S., Galetti, M., Ceballos, G., Isaac, N.J., Collen, B., 2014. Defaunation in the Anthropocene. Science 345(6195), 401-406.
Drewes, R., Spawls, S., Howell, K., Ashe, J., 2001. A Field Guide to the Reptiles of East Africa. Kenya, Tanzania, Uganda, Rwanda and Burundi
El Din, S.B.,  Al-Sadoon, M.K., 2014. Walterinnesia morgani venom: a neurotoxin with potential medicinal applications. Journal of Venomous Animals and Toxins including Tropical Diseases 20(1), 1-6
Ernst, C.H., Zug, G.R., 1996. Snakes in question: The Smithsonian answer book. Washington, DC: Smithsonian Institution Press., 64 p.
Fourcade, Y., Engler, J.O., Rödder, D., Secondi, J., 2014. Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS One 9, e97122.
Greene, H.W., 1997. Snakes: the evolution of mystery in nature. University of California Press.pp 183.
Guisan, A., Zimmermann, N.E., 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135(2-3), 147-186.
Hajima, T., Watanabe, M., Yamamoto, A., Tatebe, H., Noguchi, M.A., Abe, M., Ohgaito, R., Ito, A., Yamazaki, D., Okajima, H. and Ito, A., 2020. Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedback. Geoscientific Model Development 13(5), 2197-2244
Hannah, L., Roehrdanz, P.R., KC,K.B., Fraser, E.D., Donatti, C.I., Saenz, L., Wright, T.M., Hijmans, R.J., Mulligan, M., Berg, A., van Soesbergen, A., 2020. The environmental consequences of climate-driven agricultural frontiers. PloS one 15(2).
Hijmans, R.J., Graham, C.H., 2006. The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology 12(12), 2272-2281.
Hirzel, A. H., Le Lay, G., 2008. Habitat suitability modeling and niche theory. Journal of Applied Ecology 45(5), 1372-1381.
Hirzel, A.H., Le Lay,G., 2008. Habitat suitability modelling and niche theory. Journal of Applied Ecology 45(5), 1372-1381.
IPCC., 2014. Climate change 2014: impacts, adaptation, and vulnerability. Cambridge University Press.
IUCN, 2022. Redlist. Available from www.iucnredlist.org.
Kafash, A., Ashrafi, S.,  Ohler, A., 2018. Environmental drivers of altitudinal distribution of lizards in Iran (Case study: Family Lacertidae). Journal of Natural Environment 71(4), 495-508. (In Persian)
Kafash, A., Ashrafi, S.,  Yousefi, M., 2021. Distribution of Pipistrellus pipistrellus (Schreber, 1774) under the climate change: Identifying climate refugia and assessing protected areas effectiveness. Journal of Animal Research (Iranian Journal of Biology) 34(1), 44-56. (In Persian)
Kafash, A., Kaboli, M., Köhler, G., 2015. Comparison effect of future climatic change on the desert and mountain-dwelling reptiles in Iran (Paralaudakia Caucasi and Saara loricata). Journal of Animal Environment 7(3), 103-108. (In Persian)
Kamali, K., 2019 .Reptiles and Amphibians of IRAN. Iranshenasi publisher, 270 p. (In Persian)
Kelley, M., Schmidt, G.A., Nazarenko, L.S., Bauer, S.E., Ruedy, R., Russell, G.L., Ackerman, A.S., Aleinov, I., Bauer, M., Bleck, R., Canuto, V., 2020. GISS‐E2. 1: Configurations and climatology. Journal of Advances in Modeling Earth Systems 12(8).
Land cover, 2015, Available from www.zenodo.org.
Lehmann, A., Overton, J.M., 2014. Assessing the impacts of climate change on species distribution and ecosystem functioning using coupled dynamic-ecological models. Biology 3(2), 317-350.
Lovato, T., Peano, D., Butenschön, M., Materia, S., Iovino, D., Scoccimarro, E., Fogli, P.G., Cherchi, A., Bellucci, A., Gualdi, S., Masina, S., 2022. CMIP6 Simulations With the CMCC Earth System Model (CMCC‐ESM2). Journal of Advances in Modeling Earth Systems 14(3), e2021MS002814.
MORENO‐RUEDA, G. R. E. G. O. R. I. O., Pleguezuelos, J. M., Pizarro, M.,  Montori, A., 2012. Northward shifts of the distributions of Spanish reptiles in association with climate change. Conservation Biology 26(2), 278-283.
Parmesan, C., Yohe, G., 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918), 37-42.
Pearson, R.G., Dawson, T.P., 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?. Global Ecology and Biogeography 12(5), 361-371.
Peterson, A.T., 2006. Uses and requirements of ecological niche models and related distributional models. Biodiversity Informatics 3.
Phillips, S. J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecological Modeling 190(3-4), 231-259.
Pörtner, H.O., Scholes, R.J., Agard, J., Archer, E., Arneth, A., Bai, X., Barnes, D., Burrows, M., Chan, L., Cheung, W.L.W., Diamond, S., 2021. Scientific outcome of the IPBES-IPCC co-sponsored workshop on biodiversity and climate change.
Powers, R.P., Jetz, W., 2019. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nature Climate Change 9(4), 323-329.
Rajabizadeh, M., 2019. Snake of Iran. Iranshenasi publisher.496 p. (In Persian)
Ramanamanjato, JB., McIntyre, PB., Nussbaum, RA., 2002. Reptile, amphibian, and lemur diversity of the Malahelo forest, a biogeographical transition zone in southeastern Madagascar. Biodiversity & Conservation  11, 1791-1807.
Rather, Z.A., Ahmad, R.,  Khuroo, A.A., 2022. Ensemble modeling enables identification of suitable sites for habitat restoration of threatened biodiversity under climate change: A case study of Himalayan Trillium. Ecological Engineering 176, 106534.
Root, T. L., Price, J.T., Hall, K.R., Schneider, S.H., Rosenzweig, C., Pounds, J.A., 2003. Fingerprints of global warming on wild animals and plants. Nature 421(6918), 57-60.
Sancholi, N., 2019. Survey the habitat suitability of Lacerta media (Reptilia: Sauria) in Iran. Journal of Animal Environment 11(3), 101-104. (In Persian)
Sanderson, E.W., Jaiteh, M., Levy, M.A., Redford, K.H., Wannebo, A.V.,Woolmer, G., 2002. The human footprint and the last of the wild: the human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. BioScience 52(10), 891-904.
Scanes, C.G., 2018. Human activity and habitat loss: destruction, fragmentation, and degradation. In Animals and human society, Academic Press, pp. 451-482.
Shine, R., 1991. Strangers in a strange land: ecology of the Australian colubrid snakes. Copeia,pp. 120-131.
Sindaco, R., Valery, K.J., Alberto, V., Grieco, C., 2008. The Reptiles of the Western Palearctic: Annotated checklist and distributional atlas of the turtles, crocodiles, amphisbaenians and lizards of Europe, North Africa, Middle East, and Central Asia. Latina, Edizioni Belvedere, 361 p. 
Sinervo, B., Mendez-De-La-Cruz, F., Miles,  DB., Heulin, B., Bastiaans, E., Villagrán-Santa Cruz, M., Lara-Resendiz, R., Martínez-Méndez, N., Calderón-Espinosa, ML., Meza-Lázar,o RN., Gadsden, H., 2010. Erosion of lizard diversity by climate change and altered thermal niches. Science 328(5980), 894-899.
Thuiller, W., 2007. Climate change and the ecologist. Nature 448(7153), 550-552.
Thuiller, W., Araújo, M.B., Lavorel, S., 2004. Do we need land-cover data to model speciesdistributions in Europe?. Journal of Biogeography 31, 353-361.
Venter, O., Fuller, R.A., Segan, D.B., Carwardine, J., Brooks, T., Butchart, S.H.M., Di Marco, M., Iwamura, T., Joseph, L., O’Grady, D., Possingham, HP., Rondinini, C., Smith, R.J., Venter, M., Watson, J.E.M., 2014. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol 12, e1001891.
Voldoire, A., Saint‐Martin, D., Sénési, S., Decharme, B., Alias, A., Chevallier, M., Waldman, R., 2019. Evaluation of CMIP6 deck experiments with CNRM‐CM6‐1. Journal of Advances in Modeling Earth Systems 11(7), 2177-2213.
Williams, P., Hannah, L.E.E., Andelman, S., Midgley, G.U.Y., AraúJo, M., Hughes, G., Pearson, R., 2005. Planning for climate change: identifying minimum‐dispersal corridors for the Cape Proteaceae. Conservation Biology 19(4), 1063-1074.
 World Health Organization. 2020. Snakebite. Available from www.who.int.
Yazdanian, M., Kaboli, M., Karami, M., 2016. Ecological factors affecting microhabitat use of Iranian Mountain Steppe Viper (Vipera ebneri). Journal of Animal Environment 8(1), 65-74. (In Persian)
Yousefi, M., Ahmadi, M., Nourani, E., Behroz, R., Rajabizadeh, M., Geniez, F.,  Kaboli, M., 2015. Upward altitudinal shifts in habitat suitability of mountain vipers since the Last Glacial Maximum. PloS one 10(9), e0138087.
Zhou, P., Navid, I., A., Ma, Y., Xiao, Y., Wang, P., Ye, Z., Mi, Z., 2023. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 613(7942), 66-70.
Zinner, H., 1971. On ecology and the significance of semantic coloration in the nocturnal desert-elapid Walterinnesia aegyptia Lataste (Reptiles, Ophidia). Oecologia 7(3), 267-275.