Adar, Sara D., Filigrana, Paola A., Clements, Nicholas, & Peel, Jennifer L. (2014). Ambient Coarse Particulate Matter and Human Health: A Systematic Review and Meta-Analysis. Current Environmental Health Reports, 1 (3), 258-274.
Amanollahi, Jamil, & Ausati, Shadi. (2020). Validation of linear, nonlinear, and hybrid models for predicting particulate matter concentration in Tehran, Iran. Theoretical and Applied Climatology, 140(1), 709-717.
Azadeh, A., Saberi, M., Anvari, M., Azaron, A., & Mohammadi, M. (2011). An adaptive network based fuzzy inference system–genetic algorithm clustering ensemble algorithm for performance assessment and improvement of conventional power plants. Expert Systems with Applications, 38(3), 2224-2234. doi:
Buragohain, Mrinal, & Mahanta, Chitralekha. (2008). A novel approach for ANFIS modelling based on full factorial design. Applied Soft Computing, 8(1), 609-625.
EPA, US. (2016). Health and Environmental Effects of Particulate Matter (PM). Retrieved from https://www.epa.gov/pm-pollution/health-and-environmental-effects-particulate-matter-pm.
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., . . . Van Dorland, R. (2007). Changes in Atmospheric Constituents and in Radiative Forcing Chapter 2. United Kingdom: Cambridge University Press.
Ghasemi, Afsaneh, & Amanollahi, Jamil. (2019). Integration of ANFIS model and forward selection method for air quality forecasting. Air Quality, Atmosphere & Health, 12(1), 59-72. doi: 10.1007/s11869-018-0630-0
Hamanaka, R. B., & Mutlu, G. M. (2018). Particulate Matter Air Pollution: Effects on the Cardiovascular System. Front Endocrinol (Lausanne), 9, 680.
Haykin, Simon. (1994). Neural networks: a comprehensive foundation: Prentice Hall PTR.
Jang, J-SR. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE transactions on systems, man, and cybernetics, 23(3), 665-685.
Kaboodvandpour, Shahram, Amanollahi, Jamil, Qhavami, Samira, & Mohammadi, Bakhtiyar. (2015). Assessing the accuracy of multiple regressions, ANFIS, and ANN models in predicting dust storm occurrences in Sanandaj, Iran. Natural Hazards, 78(2), 879-893.
Kim, H. S., Park, I., Song, C. H., Lee, K., Yun, J. W., Kim, H. K., . . . Han, K. M. (2019).
Development of a daily PM10 and PM2.5 prediction system using a deep long short-term memory neural network model. Atmos. Chem. Phys., 19(20), 12935-12951.
Kim, J. (2019). Particulate Matter Mortality Rates and Their Modification by Spatial Synoptic Classification. Int J Environ Res Public Health, 16(11).
Lawrence, Jeannette. (1994). Introduction to Neural Networks: Design. Theory, and Applications (California Scientific Software, Nevada City, CA).
Liu, Huixiang, Li, Qing, Yu, Dongbing, & Gu, Yu. (2019). Air Quality Index and Air Pollutant Concentration Prediction Based on Machine Learning Algorithms. Applied Sciences, 9, 4069.
Maleki, Heidar, Sorooshian, Armin, Goudarzi, Gholamreza, Baboli, Zeynab, Tahmasebi Birgani, Yaser, & Rahmati, Mojtaba. (2019). Air pollution prediction by using an artificial neural network model. Clean Technologies and Environmental Policy. doi: 10.1007/s10098-019-01709-w
Omidvarborna, Hamid, Kumar, Ashok, & Kim, Dong-Shik. (2015). Recent studies on soot modeling for diesel combustion. Renewable and Sustainable Energy Reviews, 48, 635-647.
Paschalidou, Anastasia K., Karakitsios, Spyridon, Kleanthous, Savvas, & Kassomenos, Pavlos A. (2011). Forecasting hourly PM10 concentration in Cyprus through artificial neural networks and multiple regression models: implications to local environmental management. Environmental Science and Pollution Research, 18(2), 316-327.
Pérez, Noemí, Pey, Jorge, Cusack, Michael, Reche, Cristina, Querol, Xavier, Alastuey, Andrés, & Viana, Mar. (2010). Variability of Particle Number, Black Carbon, and PM10, PM2.5, and PM1 Levels and Speciation: Influence of Road Traffic Emissions on Urban Air Quality. Aerosol Science and Technology, 44(7), 487-499.
Schlink, Uwe, Dorling, Stephen, Pelikan, Emil, Nunnari, Giuseppe, Cawley, Gavin, Junninen, Heikki, . . . Doyle, Martin. (2003). A rigorous inter-comparison of ground-level ozone predictions. Atmospheric Environment, 37(23), 3237-3253.
Scholkopf, Bernhard, Sung, Kah-Kay, Burges, Christopher JC, Girosi, Federico, Niyogi, Partha, Poggio, Tomaso, & Vapnik, Vladimir. (1997). Comparing support vector machines with Gaussian kernels to radial basis function classifiers. IEEE transactions on Signal Processing, 45(11), 2758-2765.
Smola, Alex J, & Schölkopf, Bernhard. (2004). A tutorial on support vector regression. Statistics and computing, 14(3), 199-222.
Vapnik, Vladimir. (2013). The nature of statistical learning theory: Springer science & business media.
Wasley, Andrew; , Heal, Alexandra;, Harvey, Fiona;, & Lainio, Mie (2019). Revealed: UK government failing to tackle rise of serious air pollutant. The Guardian.
World Health, Organization. (2016). Ambient air pollution: a global assessment of exposure and burden of disease. Geneva: World Health Organization.
World Health, Organization. (2017). Evolution of WHO air quality guidelines: past, present and future (pp. 39): Copenhagen: WHO Regional Office for Europe.
Yadav, V., & Nath, S. (2019). Novel hybrid model for daily prediction of PM10 using principal component analysis and artificial neural network. International Journal of Environmental Science and Technology, 16(6), 2839-2848. doi: 10.1007/s13762-018-1999-x
Zhang, G. Peter. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159-175.