Agirre-Basurko, E., G. Ibarra-Berastegi, and I Madariaga. 2006. Regression and Multilayer Perceptron-Based Models to Forecast Hourly O3 and NO2 Levels in the Bilbao Area. In Environmental Modelling and Software, 21(4): 430–46.
Anderson, H. R. 2009. Air Pollution and Mortality: A History. Atmospheric Environment 43: 142–52.
Biancofiore, F., Verdecchia, M.C., Piero,T., Barbara, A., Eleonora, B., Marcella, B., Sebastiano, D., Tommaso, S., Colangeli, C. 2015. Analysis of Surface Ozone Using a Recurrent Neural Network ed. Edward A Keller. Science of the Total Environment 514(4): 379–87.
Brian, G., Michae, K., Bruce, D., David, C., Karen, M., Michael, D. 2007. Comparison of Lead Isotopes with Source Apportionment Models, Including SOM, for Air Particulates. Science of The Total Environment 381(1–3): 169–79.
Chelani, A.B., Chalapati Rao, C.V., Phadke, K.M., Hasan, M.Z. 2002. Prediction of Sulphur Dioxide Concentration Using Artificial Neural Networks. Environmental Modelling & Software 17(2): 159–66.
Demuth, H., Beale, M. 2002. Neural Network Toolbox Users Guide. Copyright 1992-2002, by the Math Works, Inc, Version 4, PP, 840.
Demuzere, M., Trigo, R. M., Vila-Guerau de Arellano, J., van Lipzig, N. P. M. 2009. The impact of weather and atmospheric circulation on O3 and PM10 levels at a rural mid-latitude site. Atmospheric Chemistry and Physics. 9. 2695–2714.
Demuzere, M., Trigo, R.M., Vila–Guerau de Arellano, J., van Lipzig, N.P.M. 2009. The Impact of Weather and Atmospheric Circulation on O3 and PM10 Levels at a Rural Mid–latitude Site. Atmospheric Chemistry and Physics 9: 2695–2714.
Fausett, L. 1994. Fundamental of Neural Network: Architecture, Algorithms, and Applications, Prentice. Hall Press.
García, P.J., Sánche Lasherasa, F., García-Gonzaloa, E., de Cos Juez, F.J. 2017. PM10 Concentration Forecasting in the Metropolitan Area of Oviedo (Northern Spain) Using Models Based on SVM, MLP, VARMA and ARIMA: A Case Study. Science of The Total Environment, 621: 753–61.
Giorgi, F. and Meleux, F. 2007. Modelling the regional effects of climate change on air quality, Comp. Rend. Geosci., researchgate, 339 (11), 721–733.
Giustolisi, O., Doglioni, A., Savic, D. A., Webb, B. W. 2007. A Multi-Model Approach to Analysis of Environmental Phenomena. Environmental Modelling and Software 22: 674–82.
Gratani L, Varone L. 2005. Daily and Seasonal Variation of CO2 in the City of Rome in Relationship with the Traffic Volume. Atmospheric Environment 39: 2619–2624.
Harrison, JI., Ping, SHI., ROY, M. 1997. Regression modelling of hourly NOx and NO2 concentration in urban air in Londen. Atmospheric Environmen, 31(24): 4081–94.
Jian, L., Zhao, Y., Zhu, YP., ZhangM, B., Bertolatti, D. 2012. An Application of ARIMA Model to Predict Submicron Particle Concentrations from Meteorological Factors at a Busy Roadside in Hangzhou, China.” Science Total Environment, 426: 336–345.
Jiang, D., Zhang, D., Hu, Y., Zeng, X., Tan, Y., Jianguo, T., Demin, S. 2004. Progress in Developing an ANN Model for Air Pollution Index Forecast. Atmospheric Environment, 38(40 SPEC.ISS.): 7055–64.
Karaca, F., Nikov, A., Alagha, O. 2006. NN-Airpol: A Neural-Networks-Based Method for Air Pollution Evaluation and Control. International Journal of Environment and Pollution, 28(3/4): 310–25.
Mamtimin, B., Meixner, FX. 2011. Air Pollution and Meteorological Processes in the Growing Dryland City of Urumqi (Xinjiang, China). Science of the Total Environment 2011, 409(7): 199–226.
Masoudi, M. and Gerami, S. 2017. Status of CO as an air pollutant and its prediction, using meteorological parameters in Esfahan, Iran. Pollution. 3 (4). 527-537
McCulloch, W.S., Pitts, W. 1943. A Logical Calculus of the Ideas Imminent in Nervous Activity. B.Math. Biophys, 8: 115–33.
McKendry, I.G. 2015. Evaluation of Artificial Neural Networks for Fine Particulate Pollution (PM10 and PM2.5) Forecasting.” Journal of the Air & Waste Management Association 52(9): 1096–1101.
Mohammadhassani, J., Dadvand, A., Khalilarya, Sh., Solimanpur, M. 2015. Prediction and Reduction of Diesel Engine Emissions Using a Combined ANN–ACO Method. Applied Soft Computing, 34: 139–50.
Nejadkoorki, F and and Baroutian, S. 2012. Forecasting Extreme PM10 Concentrations Using Artificial Neural Networks. Statewide Agricultural Land Use Baseline 2015, 1(1): 277–84.
Orr, Mark J.L. 1996. Introduction to Radial Basis Function Networks. Time: 1–67.
Park, S., Kim, M., Namgung, H.G., Kim, K. T., Cho, K. H., Kwon, S.B. 2018. Predicting PM10concentration in Seoul Metropolitan Subway Stations Using Artificial Neural Network (ANN). Journal of Hazardous Materials 341: 75–82.
Patricia, M., Jonathan, A., Fevrier, V., Oscar, C. 2014. A New Neural Network Model Based on the LVQ Algorithm for Multi-Class Classification of Arrhythmias. Information Sciences, 279: 483–97.
Salvador, s and Salvador, El. 2012. Air Quality Index (AQI). 16-17.
Seinfeld, J. H. and Pandis, S. N. 1998. Atmospheric chemistry and physics from air pollution to climate change, New York, John Wiley & Sons, Inc, 1113 pp.
Shariepour, Z. 2010. Seasonal and Daily Variation of Air Pollutants and Their Relation to Meteorological Parameters. Earth and Space Physics, 35(2): 119–137 (In Persian).
Sharma, N., Chaudhry, K., Rao, CC. 2005. Vehicular Pollution Modeling Using Artificial Neural Network Technique: A Review. Journal of Scientific and Industrial research. 64(9): 637.
Shepherd, G.M. 1990. The Synaptic Organization of the Brain,. third edition, Oxford university press.
Shi, Dan., Hongjian, Z., Liming, Y. 2003. Time-Delay Neural Network for the Prediction of Carbonation Tower ’ s Temperature. 52(4): 1125–28.
Yi, J and Prybutok, V.R. 1996. A Neural Network Model Forecasting for Prediction of Daily Maximum Ozone Concentration in an Industrialized Urban Area. Environmental Pollution, 92(3): 349–57.
Zannetti, P. 1990. Air Pollution Modeling, Theories, Computational Methods and Software’s, Computational Mechanics Publication.
Ziomas, I. C., Melas, D., Zerefos, C.S., Bais, A.F., Paliatsos, A.G. 1995. Forecasting Peak Pollutant Levels from Meteorological Variables. Atmospheric Environment , 29(24): 3703–11.