Mapping and spatial pattern analysis of the ecological sensitivity of mountain protected Areas (Case study: Oshtorankouh protected Area, Lorestan province)

Document Type : Research Paper

Authors

1 Department of Geography Education, Farhangian University, Tehran, Iran.

2 Department of Forestry, Faculty of Agricultural and Natural Resources, Lorestan University, Khorramabad, Iran.

10.22059/jne.2025.404616.2851

Abstract

Assessing the ecological sensitivity of protected areas provides a fundamental basis for identifying critical zones and designing adaptive management strategies under climate change conditions. This study aimed to model and analyze the spatial pattern of ecological sensitivity in the Oshtorankouh Protected Area, located in Lorestan Province, western Iran. A combination of the Delphi method and spatial analysis techniques in a GIS environment was employed. Nine ecological and physiographic indicators—including elevation, slope, aspect, climate, land use/land cover, surface runoff, spring discharge, soil erodibility, and geological formations—were selected for modeling. The Delphi-based weighting of indicators indicated that land use/land cover (0.198) and surface runoff (0.162) exerted the greatest influence on determining sensitivity levels. Spatial modeling results revealed that approximately 51% of the study area falls within the high and very high sensitivity classes, predominantly concentrated in the southern and central sectors. The global spatial autocorrelation analysis (Moran’s I= 0.773, P<0.001) confirmed a significant clustered pattern of sensitivity, while local spatial analysis (Local Moran’s I) identified high–high (HH) hot spots mainly in the southern and western parts of the area. These zones are characterized by steep slopes, intense runoff, reduced vegetation density, and expansion of agricultural lands. Overall, the findings indicate that the ecological sensitivity of Oshtorankouh is governed by complex interactions between natural and anthropogenic factors. Focusing conservation planning, vegetation restoration, and watershed management efforts on the identified hot spots can effectively enhance resilience and reduce vulnerability across this valuable mountain ecosystem.

Keywords

Afshari, M., Mohseni, M., 2020. Identification of ecological plant groups in the Malegaleh protected area. Journal of Plant Ecology 14(3), 215-229. ​
Azizi Jalilian, M., Danekar, A., Salman Mahini, A., Shayesteh, K., Taheri Sertasnizi, F., 2022. Conservation prioritization of Iran’s surface water resources based on ecological sensitivity. Ecology and Evolution 12(5), e8974. 
Bahta, Y. T., Jordaan, A., Phatudi-Mphahlele, B., 2019. Ecological vulnerability indicators to drought: Case of communal farmers in Eastern Cape, South Africa. Jàmbá: Journal of Disaster Risk Studies 11(1), 1-11.
Bai, J., Li, J., Bao, A., Chang, C., 2021. Spatial-temporal variations of ecological vulnerability in the Tarim River Basin, Northwest China. Journal of Arid Land 13, 814-834.
Bauer, C., Zhang, K., Xiao, Q., Lu, J., Hong, Y.R., Suk, R., 2022. County-level social vulnerability and breast, cervical, and colorectal cancer screening rates in the US, 2018. JAMA Network Open 5(9), e2233429-e2233429.
Bederman, S.S., McIsaac, W.J., Coyte, P.C., Kreder, H. J., Mahomed, N.N., Wright, J.G., 2010. Referral practices for spinal surgery are poorly predicted by clinical guidelines and opinions of primary care physicians. Medical Care 48(9), 852-858.
Cao, J.S., Yang, Y.Q., Deng, Z.Y., Hu, Y.D., 2022. Spatial and temporal evolution of ecological vulnerability based on vulnerability scoring diagram model in Shennongjia, China. Scientific Reports 12(1), 5168.
Ceballos, G., Ehrlich, P.R., Barnosky, A.D., García, A., Pringle, R.M., Palmer, T.M., 2015. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Science Advances 1(5), e1400253.
Chen, W., Cutter, S.L., Emrich, C.T., Shi, P., 2013. Measuring social vulnerability to natural hazards in the Yangtze River Delta region, China. International Journal of Disaster Risk Science 4(4), 169-181.
Chisadza, B., Ncube, F., Macherera, M., Bangira, T., Gwate, O., 2023. Spatio-temporal variations in the ecological vulnerability of the Upper Mzingwane sub-catchment of Zimbabwe. Geomatics, Natural Hazards and Risk 14(1), 2190857.
Chou, J., Xian, T., Zhao, R., Xu, Y., Yang, F., Sun, M., 2019. Drought risk assessment and estimation in vulnerable eco-regions of China: under the background of climate change. Sustainability 11(16), 4463.
Cinco-Castro, S., Herrera-Silveira, J., 2020. Vulnerability of mangrove ecosystems to climate change effects: The case of the Yucatan Peninsula. Ocean & Coastal Management 192, 105196.
Cinner, J.E., Barnes, M.L., 2019. Social dimensions of resilience in social-ecological systems. One Earth 1(1), 51-56.
Colangelo, M., Camarero, J.J., Borghetti, M., Gentilesca, T., Oliva, J., Redondo, M.A., Ripullone, F., 2018. Drought and Phytophthora are associated with the decline of oak species in southern Italy. Frontiers in Plant Science 1595.
Cornick, P., 2006. Nitric oxide education survey–Use of a Delphi survey to produce guidelines for training neonatal nurses to work with inhaled nitric oxide. Journal of Neonatal Nursing 12(2), 62-68.
Cronbach, L.J., Shavelson, R.J., 2004. My current thoughts on coefficient alpha and successor procedures. Educational and Psychological Measurement 64(3), 391-418.
Cumming, G.S., Allen, C.R., 2017. Protected areas as socialecological systems: perspectives from resilience and social‐ecological systems theory. Ecological Applications 27(6), 1709-1717.
Cutter, S. L., Derakhshan, S., 2019. Implementing disaster policy: Exploring scale and measurement schemes for disaster resilience. Journal of Homeland Security and Emergency Management 16(3), 20180029.
Cutter, S.L., Finch, C., 2008. Temporal and spatial changes in social vulnerability to natural hazards. Proceedings of the National Academy of Sciences 105(7), 2301-2306.
Danekar, A., Sharifi, N., Robati, M., 2018. Zoning analysis of Iran's protected areas: Sensitivity and development suitability evaluation. Iranian Journal of Nature Conservation 19(3), 87-104.
Dastan Doost, A., Jalilvand, R., 2015. Ecological capability assessment of Bashgol protected area for ecotourism and conservation using GIS. Environmental Research 36(4), 71-86.
De Marco, A., Sicard, P., Feng, Z., Agathokleous, E., Alonso, R., Araminiene, V., Paoletti, E., 2022. Strategic roadmap to assess forest vulnerability under air pollution and climate change. Global Change Biology 28(17), 5062-5085.
Delgado-Serrano, M.D.M., Oteros-Rozas, E., Ruiz-Mallén, I., Calvo-Boyero, D., Ortiz-Guerrero, C. E., Escalante-Semerena, R.I., Corbera, E., 2018. Influence of community-based natural resource management strategies in the resilience of social-ecological systems. Regional Environmental Change 18, 581-592.
Department of Environment of Iran (DOE)., 2020. Protected areas of the country. DOE publications 326 p.
Di Marco, M., Ferrier, S., Harwood, T.D., Hoskins, A.J., Watson, J. E., 2019. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573(7775), 582-585.
Dinerstein, E., Vynne, C., Sala, E., Joshi, A.R., Fernando, S., Lovejoy, T.E., Wikramanayake, E., 2019. A global deal for nature: guiding principles, milestones, and targets. Science Advances 5(4), eaaw2869.
Ervin, J., 2003. Rapid assessment of protected area management effectiveness in four countries. BioScience 53(9), 833-841.
Ford, J. D., Pearce, T., McDowell, G., Berrang-Ford, L., Sayles, J. S., Belfer, E., 2018. Vulnerability and its discontents: the past, present, and future of climate change vulnerability research. Climatic Change 151, 189-203.
Gain, A.K., Hossain, S., Benson, D., Di Baldassarre, G., Giupponi, C., Huq, N., 2021. Social-ecological system approaches for water resources management. International Journal of Sustainable Development & World Ecology 28(2), 109-124.
Gallopín, G.C., 2006. Linkages between vulnerability, resilience, and adaptive capacity. Global Environmental Change 16(3), 293-303.
Getis, A., Ord, J.K., 1992. The analysis of spatial association by use of distance statistics. Geographical Analysis 24(3), 189-206.
Gill, D. A., Mascia, M. B., Ahmadia, G.N., Glew, L., Lester, S.E., Barnes, M., Fox, H.E., 2017. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543(7647), 665-669.
Gittins, J.R., Hemingway, J.R., Dajka, J.C., 2021. How a water-resources crisis highlights social-ecological disconnects. Water Research 194, 116937.
Gong, J., Jin, T., Cao, E., Wang, S., Yan, L., 2022. Is ecological vulnerability assessment based on the VSD model and AHP-Entropy method useful for loessial forest landscape protection and adaptative management? A case study of Ziwuling Mountain Region, China. Ecological Indicators 143, 109379.
Haddad, M., Mousavi, S.F., Ghorbanian, K., Aghamohammadi, A., 2022.  Estimation of ecological vulnerability intensity of Anzali coasts using fuzzy gamma and AHP model. Journal of Environmental Assessment 28(1), 45-60.
Hasanzadeh, M., Danehkar, A., Pak, A., 2012. Application of Delphi method for criteria selection in site survey of oil jetties in Iran. Environment and Natural Resources 2(1), 119-128.
Jaafari, A., Mafi-Gholami, D., Choubin, B., 2025. Spatiotemporal dynamics of social vulnerability to natural hazards: Trends and projections from 2002 to 2030 in northwestern Iran. Sustainable Cities and Society 120, 106172.
Jaafari, A., Rahmati, O., Zenner, E.K., Mafi-Gholami, D., 2022. Anthropogenic activities amplify wildfire occurrence in the Zagros eco-region of western Iran. Natural Hazards 114(1), 457-473.
Jia, C., Xinjun, Y., Sha, Y., Kongsen, W., Mengqi, D., Xin, W., 2018. The vulnerability evolution and simulation of social-ecological systems in a semi-arid area: a case study of Yulin city, China. Journal of Geographical Sciences 28(2), 152-174.
Joevivek, V., Saravanan, S., Chandrasekar, N., 2013. Coastal vulnerability and shoreline changes for southern tip of India-remote sensing and GIS approach. Journal of Earth Science and Climatic Change 4(144), 2.
Kanwar, N., Kuniyal, J.C., 2022. Vulnerability assessment of forest ecosystems focusing on climate change, hazards and anthropogenic pressures in the cold desert of Kinnaur district, northwestern Indian Himalaya. Journal of Earth System Science 131(1), 51.
Kaplan, M., Renaud, F.G., Lüchters, G., 2009. Vulnerability assessment and protective effects of coastal vegetation during the 2004 Tsunami in Sri Lanka. Natural Hazards and Earth System Sciences 9(4), 1479-1494.
Kunte, P.D., Jauhari, N., Mehrotra, U., Kotha, M., Hursthouse, A.S., Gagnon, A.S., 2014. Multi-hazards coastal vulnerability assessment of Goa, India, using geospatial techniques. Ocean & Coastal Management 95, 264-281.
Landeta, J., 2006. Current validity of the Delphi method in social sciences. Technological Forecasting and Social Change 73(5), 467-482.
Leberger, R., Rosa, I. M., Guerra, C.A., Wolf, F., Pereira, H.M., 2020. Global patterns of forest loss across IUCN categories of protected areas. Biological Conservation 241, 108299.
Lee, Y.J., 2014. Social vulnerability indicators as a sustainable planning tool. Environmental Impact Assessment Review 44, 31-42.
Lv, X., Xiao, W., Zhao, Y., Zhang, W., Li, S., Sun, H., 2019. Drivers of spatio-temporal ecological vulnerability in an arid, coal mining region in Western China. Ecological Indicators 106, 105475.
Mafi-Gholami, D., Feghhi, J., Danehkar, A., Yarali, N., 2015. Classification and Prioritization of Negative Factors Affecting on Mangrove Forests Using Delphi Method (a Case Study: Mangrove Forests of Hormozgan Province, Iran). Advances in Bioresearch 6(3), 11-23.
Mafi-Gholami, D., Jaafari, A., Zenner, E.K., Kamari, A.N., Bui, D.T., 2020. Spatial modeling of exposure of mangrove ecosystems to multiple environmental hazards. Science of the Total Environment 740, 140167.
Mafi-Gholami, D., Pirasteh, S., Ellison, J.C., Jaafari, A., 2021. Fuzzy-based vulnerability assessment of coupled social-ecological systems to multiple environmental hazards and climate change. Journal of Environmental Management 299, 113573.
Mahapatra, M., Ramakrishnan, R., Rajawat, A. S., 2015. Coastal vulnerability assessment of Gujarat coast to sea level rise using GIS techniques: a preliminary study. Journal of Coastal Conservation 19(2), 241-256.
Mahmoudi, B., Zenner, E., Mafi-Gholami, D., Eshaghi, F., 2023. Livelihood Analysis and a New Inferential Model for Development of Forest-Dependent Rural Communities. Sustainability 15(11), 9008.
Margules, C.R., Pressey, R.L., 2000. Systematic conservation planning. Nature 405(6783), 243-253.
Meng, J., Li, Y., Feng, Y., Hua, F., Shen, X., Li, S., Wang, Z., 2023. Anthropogenic vulnerability assessment of global terrestrial protected areas with a new framework. Biological Conservation 283, 110064
Menoni, S., Molinari, D., Parker, D., Ballio, F., Tapsell, S., 2012. Assessing multifaceted vulnerability and resilience in order to design risk-mitigation strategies. Natural Hazards 64, 2057-2082.
Miller, G., 2001. The development of indicators for sustainable tourism: Results of a Delphi survey of tourism researchers. Tourism Management 22(4), 351-362.
Mitchel, A., 2005. The ESRI Guide to GIS analysis. In: Spatial Measurements and Statistics, ume 2. ESRI Press.
Mohammadi Far, B., Moradi Nia, S., 2021. Relationship between ecological factors and plant communities in Kalmend Bahadaran protected area. Journal of Environmental Biology 42(2), 517-527.  ​
Nguyen, K. A., Liou, Y.A., 2019. Global mapping of eco-environmental vulnerability from human and nature disturbances. Science of the Total Environment 664, 995-1004.
Niknefsan, M., Fattahi, R., 2023. Zoning and assessment of ecological sensitivity in the Rudsar coastal area. Iranian Journal of Environmental Science 20(2), 185-200.
O’Brien, K., Leichenko, R., Kelkar, U., Venema, H., Aandahl, G., Tompkins, H., West, J., 2004. Mapping vulnerability to multiple stressors: climate change and globalization in India. Global Environmental Change 14(4), 303-313.
Okoli, C., Pawlowski, S.D., 2004. The Delphi method as a research tool: an example, design considerations and applications. Information & Management 42(1), 15-29.
Petroni, M.L., Siqueira-Gay, J., Gallardo, A.L.C.F., 2022. Understanding land use change impacts on ecosystem services within urban protected areas. Landscape and Urban Planning 223, 104404.
Pirasteh, S., Fang, Y., Mafi-Gholami, D., Abulibdeh, A., Nouri-Kamari, A., Khonsari, N., 2024. Enhancing vulnerability assessment through spatially explicit modeling of mountain social-ecological systems exposed to multiple environmental hazards. Science of The Total Environment 930, 172744.
Pirasteh, S., Zenner, E.K., Mafi-Gholami, D., Jaafari, A., Kamari, A.N., Liu, G., Li, J., 2021. Modeling mangrove responses to multi-decadal climate change and anthropogenic impacts using a long-term time series of satellite imagery. International Journal of Applied Earth Observation and Geoinformation 102, 102390.
Pomoim, N., Hughes, A.C., Trisurat, Y., Corlett, R.T., 2022. Vulnerability to climate change of species in protected areas in Thailand. Scientific Reports 12(1), 5705.
Reckien, D., 2018. What is in an index? Construction method, data metric, and weighting scheme determine the outcome of composite social vulnerability indices in New York City. Regional Environmental Change 18, 1439-1451.
Rorato, A.C., Escada, M.I.S., Camara, G., Picoli, M.C., Verstegen, J.A., 2022. Environmental vulnerability assessment of Brazilian Amazon indigenous lands. Environmental Science & Policy 129, 19-36.
Sarif, M.O., Gupta, R.D., 2022. Evaluation of seasonal ecological vulnerability using LULC and thermal state dynamics using Landsat and MODIS data: a case study of Prayagraj City, India (1987–2018). Environmental Science and Pollution Research 29(51), 77502-77535.
Schröter, D., Polsky, C., Patt, A.G., 2005. Assessing vulnerabilities to the effects of global change: an eight step approach. Mitigation and Adaptation Strategies for Global Change 10, 573-595.
Su, S., Pi, J., Wan, C., Li, H., Xiao, R., Li, B., 2015. Categorizing social vulnerability patterns in Chinese coastal cities. Ocean & Coastal Management 116, 1-8.
Thangaratinam, S., Redman, C.W., 2005. The Delphi technique. The Obstetrician & Gynecologist 7(2), 120-125.
Turner, B.L., Kasperson, R.E., Matson, P.A., McCarthy, J.J., Corell, R.W., Christensen, L., Schiller, A., 2003. A framework for vulnerability analysis in sustainability science. Proceedings of the National Academy of Sciences 100(14), 8074-8079.
UNEP-WCMC., 2022. World Database on Protected Areas (WDPA). https://www.protect edplanet.net/.
Wei, W., Shi, S., Zhang, X., Zhou, L., Xie, B., Zhou, J., Li, C., 2020. Regional-scale assessment of environmental vulnerability in an arid inland basin. Ecological Indicators 109, 105792.
Wilhelmi, O.V., Morss, R.E., 2013. Integrated analysis of societal vulnerability in an extreme precipitation event: A Fort Collins case study. Environmental Science & Policy 26, 49-62.
Windle, P.E., 2004. Delphi technique: assessing component needs. Journal of Paranesthesia Nursing 19(1), 46-47.
Xia, M., Jia, K., Zhao, W., Liu, S., Wei, X., Wang, B., 2021. Spatio-temporal changes of ecological vulnerability across the Qinghai-Tibetan Plateau. Ecological Indicators 123, 107274.
Yarali, N., Mafi Gholami, D., Jafari, A., Soltani, A., Mahmoudi, M., 2010. Environmental impact assessment (EIA) of Oshtorankooh protected area using degradation model. Environmental Researches 1(1), 13-22.
Yekom Consulting Engineers (YCE)., 2015. Oshtorankooh protected area management plan. 389 p.
Yin, J., Yin, Z., Wang, J., Xu, S., 2012. National assessment of coastal vulnerability to sea-level rise for the Chinese coast. Journal of Coastal Conservation 16(1), 123-133.
Yoon, D.K. 2012. Assessment of social vulnerability to natural disasters: a comparative study. Natural Hazards 63, 823-843.
Yuliawan, D., Hakim, D., Juanda, B., Fauzi, A., 2022. Classification and prediction of rural socio-economic vulnerability (IRSV) integrated with social-ecological system (SES). Decision Science Letters 11(3), 223-234.
Zhang, X., Liu, K., Wang, S., Wu, T., Li, X., Wang, J., Ji, Y., 2022. Spatiotemporal evolution of ecological vulnerability in the Yellow River Basin under ecological restoration initiatives. Ecological Indicators 135, 108586.
Zhang, Y., Zhou, D., Li, Z., Qi, L., 2020. Spatial and temporal dynamics of social-ecological resilience in Nepal from 2000 to 2015. Physics and Chemistry of the Earth, Parts A/B/C 120, 102894.