بررسی پیامدهای محیط‌زیستی تصفیه‌خانة فاضلاب شهرستان زابل با رویکرد چرخة حیات

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه محیط‌ زیست، دانشکدة منابع طبیعی، دانشگاه زابل، زابل، ایران.

10.22059/jne.2025.402134.2840

چکیده

این مطالعه با هدف شناسایی پیامدهای محیط‌زیستی تصفیه‌خانة فاضلاب شهرستان زابل و تعیین نقاط بحرانی یا نقاط ضعف سیستم تصفیه‌خانه و ارائة راهکار اصلاحی جهت کاهش شدت اثرات به روش ارزیابی چرخة حیات انجام شد. بدین‌منظور، فاکتورهای کیفی و برخی فلزات سنگین  در نمونۀ فاضلاب ورودی و پساب خروجی تصفیه‌خانه اندازه‌گیری شد. سپس، پیامدهای میانی و پایانی محیط‌زیستی تصفیه‌خانه به‌ازای واحد کارکردی (۱ مترمکعب تصفیة فاضلاب) توسط ReCiPi 2016 H برآورد شد. اثرات اقلیمی تصفیه‌‌خانه نیز به کمک روش ارائه شده توسط هیأت بین دولتی تغییر اقلیم (IPCC) تعیین گردید. هریک از پارامترهای انرژی‌خواهی تجمعی (CED) و ردپای اکولوژیک (EF) نیز محاسبه شد. براساس آزمون ReCiPe، مهم‌ترین عوامل مؤثر، برق مصرفی و سولفات موجود در پساب بود که بیشترین تأثیر را بر سمیت اکوسیستم‌های خشکی (Kg 1,4-DCB eq 0/509)، سمیت اکوسیستم‌های آب شیرین (kg 1,4-DCB eq 0/251)، سمیت غیر سرطانزایی انسانی (kg 1,4-DCB eq 27/7) و سمیت اکوسیستم‌های دریایی (Kg 1,4-DCB eq 0/259) داشتند. کربن منتشره نیز برابر 3/969 کیلوگرم CO2 برآورد شد. همچنین مهم‌ترین شکل انرژی مصرفی نیز سوخت‌های فسیلی تعیین شدند. در بخش ردپای اکولوژیک، نیز بیشترین تأثیر بر سلامت انسان به‌دست آمد. به‌طور کلی مصرف برق و سولفات نقطة بحرانی تأثیرگذار بر پیامدهای محیط‌زیستی تصفیه‌خانه بودند. با جایگزین کردن انرژی‌های پاک مانند بادی و خورشیدی، می‌توان تأثیر استفاده از سوخت‌های فسیلی را کاهش داد. همچنین بهبود علمکرد تصفیة هوازی پساب ورودی و به‌دنبال آن کاهش غلظت آلاینده‌های مختلف مثل سولفات، می‌تواند تأثیر معنی‌داری در کاهش میزان پیامدها داشته باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Investigating the environmental impacts of the Zabol wastewater treatment plant using a life cycle approach

نویسندگان [English]

  • Fatemeh Sargolzaei
  • Fatemeh Einollahipeer
  • Reza Dahmardeh Behrooz
  • Narjes Okati

Department of Environment, Faculty of Natural Resources, University of Zabol, Zabol, Sistan and Baluchestan, Iran.

چکیده [English]

This study was conducted to comprehensively evaluate the environmental impacts associated with the wastewater treatment plant (WWTP) in Zabol city, with the objectives of identifying the system’s critical and weak points and proposing corrective strategies to mitigate these impacts. The midpoint and endpoint environmental effects of the WWTP were quantified per functional unit (1 m³ of treated wastewater) using the ReCiPe 2016 H methodology. Climatic impacts were assessed following the approach recommended by the Intergovernmental Panel on Climate Change (IPCC). Additionally, the cumulative energy demand (CED) and ecological footprint (EF) indicators were calculated to provide a broader perspective on the plant’s environmental performance. The life cycle assessment (LCA) results, based on the ReCiPe method, indicated that electricity and sulphate were the most influential contributors, exerting the highest impacts on terrestrial ecosystem toxicity (0.509 kg 1,4-DCB eq), freshwater ecosystem toxicity (0.251 kg 1,4-DCB eq), human non-carcinogenic toxicity (27.7 kg 1,4-DCB eq), and marine ecotoxicity (0.259 kg 1,4-DCB eq). The total carbon emissions of the plant were estimated at 3.969 kg CO₂. In terms of energy profile, fossil fuels were identified as the predominant source of energy consumption. The ecological footprint analysis revealed that human health impacts represented the largest contribution among all assessed categories. Overall, electricity consumption and sulphate were identified as the main environmental hotspots of the WWTP. Consequently, replacing fossil fuels with renewable energy sources, such as wind and solar power, could significantly reduce the energy-related impacts. Furthermore, improving the performance of the aerobic treatment process and consequently reducing the sulfate concentration in the influent wastewater can have a significant effect on mitigating the overall environmental impacts.

کلیدواژه‌ها [English]

  • Endpoint parameters
  • Global warming
  • Heavy metals
  • Midpoint parameters
  • Physicochemical factors of Water
Adhikari, B., Khanal, S.N., Giri, D., Lamichhane, J., 2014. Seasonal variation of pH, BOD, COD and BOD/COD ratio in different ages of landfill leachate in Nepal. Journal of Biomolecule Reconstruction 11(2), 89-99.
Azizi, S.Q., Saleh, S.M., Omar, I.A., 2019. Essential treatment processes for industrial wastewaters and reusing for irrigation. Zanco Journal of Pure and Applied Sciences 31(3), 269-275.
Boiocchi, R., Viotti, P., Lancione, D., Stracqualursi, N., Torretta, V., Ragazzi, M., Rada, E.C., 2023. A study on the carbon footprint contributions from a large wastewater treatment plant. Energy Report 9, 274-286.
Capodaglio, A.G., 2023. Urban Wastewater Mining for Circular Resource Recovery: Approaches and Technology Analysis. Water 15(22), 3967.
Çetinkaya, M., Üstün, G.E., 2022. Monitoring and evaluation of the efficiency of a mixed textile-domestic wastewater treatment plant for 3 years. Environmental Monitoring and Assessment 194(6), 430.
Charpentier Poncelet, A., Loubet, P., Helbig, C., Beylot, A., Muller, S., Villeneuve, J., Sonnemann, G., 2022. Midpoint and endpoint characterization factors for mineral resource dissipation: methods and application to 6000 data sets. The International Journal of Life Cycle Assessment 27(9), 1180-1198.
Chen, W., Zhang, Q., Hu, L., Geng, Y., Liu, C., 2023. Understanding the greenhouse gas emissions from China’s wastewater treatment plants: Based on life cycle assessment coupled with statistical data. Ecotoxicology and Environmental Safety 259, 115007.
Das, D.K., Chowdhury, S., 2021. Contribution of Renewable Energy in Mitigation of Global Warming Caused by Fossil Fuel. International Journal of Renewable Energy Resources 11(2), 57-65.
Demir, Ö., Yapıcıoğlu, P., 2019. Investigation of GHG emission sources and reducing GHG emissions in a municipal wastewater treatment plant. Greenhouse Gases: Science and Technology 9(5), 948-964.
Dessie, B.K., Tessema, B., Asegide, E., Tibebe, D., Alamirew, T., Walsh, C.L., Zeleke, G., 2022. Physicochemical characterization and heavy metals analysis from industrial discharges in Upper Awash River Basin, Ethiopia. Toxicology Reports 9, 1297-1307.
Dong, B., 2012. Life cycle assessment of wastewater treatment plants, Massachusetts Institute of Technology. Massachusetts Institute of Technology, pp. 1-65.
Einollahipeer, F., Ghafari, M., Dehmardeh Behrooz, R., 2020. Feasibility study of using urban wastewater treatment plant effluent in agriculture and aquaculture with CWQI model (case study, Zabol city, Sistan and Baluchestan province, Iran). Journal of Animal Environment 12(4), 581-592.‎ (In Persian)
Eskandari, A., Morovati, M., Alaiee, E., Alavi, K., 2020. Investigating the Wastewater Treatment System of the Tehran Oil Industry Research Institute using the Life Cycle Assessment Method. The Journal of Toloo-e-behdasht 19(2), 96-108. (In Persian)
Federation, W.E., Association, A., 2005. Standard methods for the examination of water and wastewater. American Public Health Association (APHA): Washington, DC, USA, pp. 21.
Finkbeiner, M., 2014. The international standards as the constitution of life cycle assessment: the ISO 14040 series and its offspring. In Background and future prospects in life cycle assessment, Dordrecht: Springer Netherlands 85-106.
Goglio, P., Williams, A.G., Balta-Ozkan, N., Harris, N.R., Williamson, P., Huisingh, D., Tavoni, M., 2020. Advances and challenges of life cycle assessment (LCA) of greenhouse gas removal technologies to fight climate changes. Journal of Cleaner Production 244, 118896.
Gomez, S.R., Castillo, N.A.M., Orozco, I.H., Galarza, A.Á., Larragoitia, S.A.C., Flores, M.M.A., Vázquez, V.Á., 2025. Life Cycle Assessment of a wastewater treatment plant in an urban area using the environmental footprint method: SR Gomez et al. Environment, Development and Sustainability 27(4), 9145-9163.
Guerra-Rodríguez, S., Cuesta, S., Pérez, J., Rodríguez, E., Rodríguez-Chueca, J., 2023. Life Cycle Assessment of sulfate radical based-AOPs for wastewater disinfection. Chemical Engineering Journal 474, 145427.
Gustavsson, L., Börjesson, P., Johansson, B., Svenningsson, P., 1995. Reducing CO2 emissions by substituting biomass for fossil fuels. Energy 20(11), 1097-1113.
Hao, T.W., Xiang, P.Y., Mackey, H.R., Chi, K., Lu, H., Chui, H.K., Chen, G.H., 2014. A review of biological sulfate conversions in wastewater treatment. Water Research 65, 1-21.
Hardaker, A., Styles, D., Williams, P., Chadwick, D., Dandy, N., 2022. A framework for integrating ecosystem services as endpoint impacts in life cycle assessment. Journal of Cleaner Production 370, 133450.
Kamble, S., Singh, A., Kazmi, A., Starkl, M., 2019. Environmental and economic performance evaluation of municipal wastewater treatment plants in India: a life cycle approach. Water Science and Technology 79(6), 1102-1112.
Karakas, A., Tozum-Akgul, S., Komesli, O.T., Kaplan-Bekaroglu, S.S., 2024. Carbon footprint analysis of advanced biological wastewater treatment plant. Journal of Water Process Engineering 61, 105254.
Karolinczak, B., Walczak, J., Bogacka, M., Zubrowska-Sudol, M., 2024. Life Cycle Assessment of sewage sludge mono-digestion and co-digestion with the organic fraction of municipal solid waste at a wastewater treatment plant. Science of the Total Environment 907, 167801.
Kazemi, A., Bahramifar, N., Heydari, A., Olsen, S.L., 2018. Life cycle assessment of nanoadsorbents at early-stage technological development. Journal of Cleaner Production 174, 527-537.
Kobayashi, Y., Peters, G.M., Ashbolt, N.J., Shiels, S., Khan, S.J., 2015. Assessing burden of disease as disability adjusted life years in life cycle assessment. Science of the Total Environment 530, 120-128.
Liu, J., Sun, B., Piao, W., Jin, M., 2024. Evaluation of the Environmental Impact and Energy Utilization Efficiency of Wastewater Treatment Plants in Tumen River Basin Based on a Life Cycle Assessment+ Data Envelopment Analysis Model, Sustainability 16(4), 1690.‏
Mainardis, M., Ferrara, C., Cantoni, B., Di Marcantonio, C., De Feo, G., Goi, D., 2024. How to choose the best tertiary treatment for pulp and paper wastewater? Life cycle assessment and economic analysis as guidance tools. Science of the Total Environment 906, 167598.
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., Maycock, T.K., Waterfield, T., Yelekçi, O., Yu, R., Zhou, B., 2021. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2391 pp.
McNamara, G., Fitzsimons, L., Horrigan, M., Phelan, T., Delaure, Y., Corcoran, B., Clifford, E., 2016. Life cycle assessment of wastewater treatment plants in Ireland. Journal of Sustainable Development of Energy, Water and Environment Systems 4(3), 216-233.
Nowrouzi, M., Abyar, H., 2021. A framework for the design and optimization of integrated fixed-film activated sludge-membrane bioreactor configuration by focusing on cost-coupled life cycle assessment. Journal of Cleaner Production 296, 126557.
Olagunju, B.Koch, D., Friedl, A., Mihalyi, B., 2023. Influence of different LCIA methods on an exemplary scenario analysis from a process development LCA case study. Environment. Development and Sustainability 25(7), 6269-6293.‏
Parsajou, H., Fataei, E., 2019. Environmental assessment of the life cycle of sludge treatment systems of ardabil and khalkhal wastewater treatment plants. Amirkabir Journal of Civil Engineering 51(2), 243-256.
Rahmati, M., Rasouli, M., Haji Agha Alizadeh, H., Ataeiyan, B., 2024. Impact Evaluation of Wastewater Treatment Based on the Anaerobic Digestion of Sewage Sludge Using the Life Cycle Assessment Method. International Journal of Chemical Engineering 2024(1), 5991815.
‏Salo, H., 2017. A life cycle assessment of potable water treatment plant (Master's thesis).
Saravanan, A., Kumar, P.S., Duc, P.A., Rangasamy, G., 2023. Strategies for microbial bioremediation of environmental pollutants from industrial wastewater: A sustainable approach. Chemosphere 313, 137323.
Shahraki, H., Einollahipeer, F., Abyar, H., Erfani, M., 2023. Assessing the environmental impacts of copper cathode production based on life cycle assessment. Integrated Environmental Assessment and Management 20(4), 1180-1190.
Statistical Center of Iran. 2013. Iran statistical yearbook 583, 19.
Szulc, P., Kasprzak, J., Dymaczewski, Z., Kurczewski, P., 2021. Life cycle assessment of municipal wastewater treatment processes regarding energy production from the sludge line. Energies 14(2), 356.
Tariq, A., Mushtaq, A., 2023. Untreated wastewater reasons and causes: A review of most affected areas and cities. International Journal of Chemical and Biochemical Science 23, 121-143.
Teo, C.J., Karkou, E., Vlad, O., Vyrkou, A., Savvakis, N., Arampatzis, G., Angelis-Dimakis, A., 2023. Life cycle environmental impact assessment of slaughterhouse wastewater treatment. Chemical Engineering Research and Design 200, 550-565.‏
Tetteh, E.K., Rathilal, S., 2022. Biophotocatalytic reduction of CO2 in anaerobic biogas produced from wastewater treatment using an integrated system. Catalysts 12(1), 76.
Thanigaivel, S., 2023. Ecological disturbances and abundance of anthropogenic pollutants in the aquatic ecosystem: Critical review of impact assessment on the aquatic animals. Chemosphere 313, 137475.