تحلیل اکوهیدرولوژیک اثر کربن سیاه بر تسریع ذوب برف در ارتفاعات البرز با بهره‌گیری از سنجش‌ازدور و مدل‌سازی آماری

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی آب، دانشکدة مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری ایران.

10.22059/jne.2025.401222.2835

چکیده

برف کوهستانی به‌عنوان یکی از عناصر کلیدی چرخة هیدرولوژیک، نقشی اساسی در ذخیره و رهاسازی منابع آب سطحی و زیرسطحی ایفا می‌کند. با این حال، آلودگی ناشی از کربن سیاه می‌تواند بازتابندگی سطح برف را کاهش داده و موجب تسریع در فرآیند ذوب شود. هدف این پژوهش، بررسی رابطة میان غلظت کربن سیاه و تغییرات آلبیدوی برف در رشته‌کوه البرز در محدودة ارتفاعی بالاتر از 2000 متر از سطح دریا در بازة زمانی 2000 تا 2024 با رویکرد اکوهیدرولوژیک بوده ‌است. برای این منظور، داده‌های آلبیدو از محصول MOD10A1 V6.1 و داده‌های کربن سیاه از بازتحلیل MERRA-2 استخراج شد. روابط تحلیل آماری به روش رگرسیون خطی و مدل جمعی تعمیم‌یافته (GAM) انجام شد. نتایج نشان داد همبستگی منفیِ معنی‌داری بین غلظت کربن سیاه و آلبیدوی برف در ماه‌های زمستان و اوایل بهار وجود دارد. بنابراین آلاینده‌ها در کاهش بازتابندگی و افزایش سرعت ذوب برف نقش دارند. خروجی مدل GAM رابطة غیرخطی بین غلظت کربن سیاه و حساسیت آلبیدو را نشان داد. حساسیت آلبیدو پس از عبور غلظت کربن سیاه از آستانة 0/38 میکروگرم بر مترمربع افزایش یافته و با رسیدن به سطح اشباع 0/45 میکروگرم بر مترمربع کاهش یافت. در بازة بحرانی 0/40 تا 0/50 بیشترین افت آلبیدو مشاهده شد. بررسی روند داده‌ها نیز حاکی از افزایش معنی‌دار کربن سیاه در اغلب ماه‌ها و کاهش پیوستة آلبیدو در دورة سرد سال است. تحلیل عاملی نیز نشان داد که اگرچه عامل دما-رطوبت در بسیاری از سال‌ها روند پایداری داشته است، اما روند افزایشی نوسانات عامل آلودگی-تابشی از حدود یک دهة اخیر به‌عنوان عامل محرک اصلی ذوب زودرس برف است.

کلیدواژه‌ها

عنوان مقاله [English]

Ecohydrological analysis of black carbon effects on accelerated snowmelt in the Alborz highlands using remote sensing and statistical modeling

نویسندگان [English]

  • Reza Norooz-Valashedi
  • Mohammadreza Noroozian-Rostami

Department of Water Engineering, Faculty of Agricultural Engineering, Sari University of Agricultural Sciences and Natural Resources, Sari, Iran.

چکیده [English]

Mountain snow, as a key component of the hydrological cycle, plays a crucial role in supplying both surface and subsurface water resources. This study employed an ecohydrological approach and remote sensing data to investigate the impact of black carbon (BC) pollution on snow surface albedo in the Alborz Mountains at elevations above 2000 meters during 2000–2024. Albedo data were obtained from the MOD10A1 V6.1 product, and BC data from the MERRA-2 reanalysis. Statistical analyses, including linear regression and the Generalized Additive Model (GAM), were conducted to examine temporal and monthly relationships between these variables. Results revealed a significant negative correlation between BC concentration and snow albedo during winter and early spring, highlighting the direct role of pollutants in reducing reflectivity and accelerating snowmelt. GAM results showed a nonlinear relationship between BC concentration and albedo sensitivity: sensitivity increased when BC exceeded 0.38 µg/m² but declined after reaching a saturation point of 0.45 µg/m². This identifies a critical BC concentration range of 0.40–0.50 µg/m², where snow albedo experiences the greatest reduction. Additionally, temporal trends indicated a significant increase in BC for most months and a continuous decline in albedo during cold periods. Factor analysis further demonstrated that, although the temperature–moisture factor remained stable over many years, increasing fluctuations in the pollution–radiation factor over the past decade have been the main driver of early snowmelt.

کلیدواژه‌ها [English]

  • Albedo
  • Black carbon
  • Factor analysis
  • Generalized additive model
  • Remote sensing
  • Snow reserves
Azizi, G., Rahimi, M., Mohammadi, H., Khoshakhlagh, F., 2017. Spatio-temporal variations of snow cover in the southern slope of central Alborz. Physical Geography Research 49(3), 381-393. (In Persian)
Deems, J.S., Fassnacht, S.R., Elder, K.J., 2013. Interannual consistency in climate and snowpack variables in mountain basins. Hydrological Processes 27(13), 1874-1888.
Doherty, S.J., Warren, S.G., Grenfell, T.C., Clarke, A.D., Brandt, R.E., 2010. Light-absorbing impurities in Arctic snow. Atmospheric Chemistry and Physics 10(23), 11647-11680.
Dong, C., Menzel, L., 2016. Improving the accuracy of MODIS 8-day snow products with in situ temperature and precipitation data. Journal of Hydrology, 534, 466-477.
Ekrami, M., Talebi, A., Soleimani Motlagh, M., 2010. Investigation of the effect of dust on accelerating snowmelt: A case study of Shirkuh Heights, Yazd. The 2nd National Conference on Wind Erosion and Dust Storms, Yazd, Iran. (In Persian)
Field, A., 2017. Discovering Statistics Using IBM SPSS Statistics (5th ed.). SAGE Publications, London.
Flanner, M.G., Zender, C.S., Randerson, J.T., Rasch, P.J., 2007. Present-day climate forcing and response from black carbon in snow. Journal of Geophysical Research: Atmospheres 112(D11).
Gafurov, A., Bardossy, A., 2009. Cloud removal methodology from MODIS snow cover product. Hydrology and Earth System Sciences 13(7), 1361-1373.
Gelaro, R., McCarty, W., Suárez, M.J., Todling, R., Molod, A., Takacs, L., Randles, C.A., Darmenov, A., Bosilovich, M.G., Reichle, R., Wargan, K., 2017. The Modern Era Retrospective Analysis for Research and Applications, Version 2 (MERRA 2). Journal of Climate 30(14), 5419-5454.
Ghasemi, F., Abbasi, S., Keshavarzi, B., Moore, F., Turner, A., 2021. Microplastics in snow of urban and remote areas of northern Iran. Science of The Total Environment 779, 146530. (In Persian)
Gonzalez, R.C., Woods, R.E., 2002. Digital Image Processing (2nd ed.). Prentice Hall.
Hadley, O.L., Kirchstetter, T.W., 2012. Black-carbon reduction of snow albedo. Nature Climate Change 2(6), 437-440.
Hu, Z., Huang, J., Zhao, C., Ma, Y., Jin, Q., Qian, Y., Leung, L.R., Bi, J., Ma, J., Yang, B., 2020. Modeling dust sources, transport, and radiative effects at different altitudes over the Tibetan Plateau. Atmospheric Chemistry and Physics 20(3), 1507-1529.
Kang, S., Zhang, Y., Qian, Y., Wang, H., 2020. A review of black carbon in snow and ice and its impact on the cryosphere. Earth-Science Reviews 210, 103346.
Karbalaee, M., 2022. Spatiotemporal analysis of albedo variability in Iran (2000–2018) and its controlling factors. Atmospheric Research 270, 106087.
Kefayat Motlagh, M., 2024. Detection of land surface albedo changes over Iran using satellite observations. Quarterly Journal of the Royal Meteorological Society.
Li, H., Deng, Y., Han, C., Chen, S., Xu, C., 2022. Quantitative determination of environmental factors governing the snow melting: A geodetector case study in the central Tienshan Mountains. Environmental Science and Pollution Research 29(51), 77483-77496.
Li, X., Heap, A.D., 2014. A review of spatial interpolation methods for environmental scientists. Environmental Modelling and Software, 53, 173–189.
Lindsay, C.H., Zhu, J., Miller, A.E., Wilson, T.L., 2015. Deriving snow covers metrics for Alaska from MODIS. Remote Sensing 7, 12961-12985.
Mir Yaghoubzadeh, M.H., Ghanbarpour, M.R., 2010. Investigation to MODIS snow cover maps usage in snowmelt runoff modeling (Case study: Karaj River Basin). Journal of Geoscience 76, 140-148. (In Persian)
Molod, A., Takacs, L., Suarez, M.J., Bacmeister, J., 2012. Development of the GEOS 5 Atmospheric General Circulation Model: Mean Climate and Variability. Proceedings of the 10th Annual GMAO MERRA 2 Workshop, NASA Goddard Space Flight Center.
Painter, T.H., Skiles, S.M., Deems, J.S., Brandt, W.T., Dozier, J., 2013. Variation in rising limb of snowmelt runoff in response to dust radiative forcing in the Upper Colorado River Basin. Geophysical Research Letters 40(15), 3945-3949.
Qian, Y., Flanner, M.G., Leung, L.R., Wang, W., 2011. Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate. Atmospheric Chemistry and Physics 11(5), 1929-1948.
Raispour, K., Khosravi, Y., 2021. Long-term monitoring of black carbon concentration over Iran using MERRA-2 reanalysis data. Environmental Sciences (Tarbiat Modares University). (In Persian)
Réveillet, M., Brun, E., Dumont, M., 2022. Snow darkening by light-absorbing impurities: Impacts on snowmelt and regional hydrology in the Alps and Pyrenees. Nature Communications 13, 4512.
Schafer, J.L., Graham, J.W., 2002. Missing data: Our view of the state of the art. Psychological Methods 7(2), 147–177.
Shahroudi, N., Rossow, W., 2014. Using land surface microwave emissivities to isolate the signature of snow on different surface types. Remote Sensing of Environment 152, 638-653.
Skiles, S.M., Flanner, M.G., Cook, J.M., Dumont, M., Painter, T.H., 2018. Radiative forcing by light-absorbing particles in snow. Nature Climate Change 8(11), 964-971.
Skiles, S.M., Painter, T.H., 2017. Assessment of radiative forcing by light-absorbing particles in snow over the Sierra Nevada. Journal of Geophysical Research: Atmospheres 122(12), 6738-6756.
UNEP, 2007. Global outlook for ice and snow. United Nations Environment Programme. ISBN: 978-92-807-2799-9.
Wilks, D.S., 2011. Statistical Methods in the Atmospheric Sciences. Academic Press.
Wood, S.N., 2017. Generalized Additive Models: An Introduction with R (2nd ed.). Chapman and Hall/CRC.
Wood, S.N., 2025. mgcv: Mixed GAM computation vehicle with automatic smoothness estimation (Version 1.9-3) [Software]. CRAN.
Yousefi, R., Wang, F., Ge, Q., Lelieveld, J., Shaheen, A., 2023. Analysis of the winter AOD trends over Iran from 2000 to 2020 and associated meteorological effects. Remote Sensing 15(1), 1-20.
Zhang, B., Wu, Y., Lei, L., Li, J., Liu, L., 2013. Monitoring changes of snow cover, lake and vegetation phenology in Nam Co Lake Basin (Tibetan Plateau) using remote sensing (2000–2009). Journal of Great Lakes Research 39, 224-233.
Zhang, X., Jiao, Z., Zhao, C., Qu, Y., Liu, Q., Zhang, H., Cui, L., 2022. Review of land surface albedo: Variance characteristics, climate effect and management strategy. Remote Sensing 14(6), 1382.
Zhang, Y., Li, X., Wang, S., 2024. Effects of black carbon deposition on snow albedo and surface energy balance: Evidence from numerical simulations. EGU Preprints, egusphere-2024-1717.
Zhang, Y., Li, X., Wang, S., Chen, H., 2025. Coupled SNICAR–Polar-WRF modeling of black carbon impacts on Arctic snowmelt and radiative forcing. Atmospheric Chemistry and Physics 25, 1-20.
Zhang, Y., Wang, S., Li, X., 2025. Black carbon and mineral dust effects on snow and glacier melt over the Tibetan Plateau. Science of The Total Environment 1025, 154584.
Zhou, H., Aizen, E., Aizen, V., 2013. Deriving long term snow covers extent dataset from AVHRR and MODIS data: Central Asia case study. Remote Sensing of Environment 136, 146-162.